1.Application of central composite experimental design for the formulation and optimization of meropenem loaded chitosan-alginate nanoparticles
Clinton B. Gomez ; Jan Vonrich M. Huna ; Merrene Bright D. Judan ; Carl Edward F. Pahuyo
Philippine Journal of Health Research and Development 2024;28(1):32-36
Background:
Response surface methodology (RSM) is a cost-effective multivariate technique employed in optimization of pharmaceutical formulations. Central composite experiment design is one of the common designs under RSM used for determining optimum nanoparticle formulation parameters.
Objectives:
To optimize a formulation for meropenem-loaded chitosan alginate nanoparticles using central composite experimental design.
Methodology:
Meropenem loaded chitosan-alginate nanoparticles were fabricated using aqueous sodium alginate solution and ionotropic gelation with calcium chloride and chitosan, using an optimized formulation derived from a central composite design. The fabricated Mer-CS/Alg NPs were characterized for their particle size, zeta potential, encapsulation efficiency, and loading capacity. The central composite design has been used to adequately assess the influence of two factors namely meropenem concentration and Alg/CS mass ratio on the responses based on a limited number of 13 triplicate formulation runs.
Results:
This study successfully formulated meropenem-loaded chitosan/alginate nanoparticles. The optimal formulation of the Mer- CS/Alg NPs was 1.7 mg/mLcurcumin, and a Alg/CS mass ratio of 9.8:1. Based on the predicted values of the response variable, the optimal formulation would have a particle size of 490.64 nm, zeta potential of -28.59 mVand a loading capacity of 76.89%.
Conclusion
The central composite experimental design successfully optimized the nanoparticle formulation of meropenem and chitosan/alginate polymer solution. The optimum formulation produced nanoparticles with adequate size, high stability, and high drug load.
Meropenem
;
Nanoparticles
;
Research Design
2.Effect of polymer nanoparticles on atherosclerotic lesions and the associated mechanisms: a review.
Hang ZOU ; Yan LONG ; Yuzhen REN ; Tieying YIN
Chinese Journal of Biotechnology 2023;39(4):1390-1402
Polymer nanoparticles generally refer to hydrophobic polymers-based nanoparticles, which have been extensively studied in the nanomedicine field due to their good biocompatibility, efficient long-circulation characteristics, and superior metabolic discharge patterns over other nanoparticles. Existing studies have proved that polymer nanoparticles possess unique advantages in the diagnosis and treatment of cardiovascular diseases, and have been transformed from basic researches to clinical applications, especially in the diagnosis and treatment of atherosclerosis (AS). However, the inflammatory reaction induced by polymer nanoparticles would induce the formation of foam cells and autophagy of macrophages. In addition, the variations in the mechanical microenvironment of cardiovascular diseases may cause the enrichment of polymer nanoparticles. These could possibly promote the occurrence and development of AS. Herein, this review summarized the recent application of polymer nanoparticles in the diagnosis and treatment of AS, as well as the relationship between polymer nanoparticles and AS and the associated mechanism, with the aim to facilitate the development of novel nanodrugs for the treatment of AS.
Humans
;
Polymers/chemistry*
;
Cardiovascular Diseases
;
Nanoparticles/chemistry*
;
Drug Delivery Systems
;
Atherosclerosis/pathology*
3.Preparation, properties and antibacterial applications of medical nano-metals and their oxides: a review.
Jiasheng ZUO ; Ying QIN ; Zuzhen ZHAO ; Lu XING ; Tian LIU ; Song WANG ; Weiqiang LIU
Chinese Journal of Biotechnology 2023;39(4):1462-1476
Antibiotics are playing an increasingly important role in clinical antibacterial applications. However, their abuse has also brought toxic and side effects, drug-resistant pathogens, decreased immunity and other problems. New antibacterial schemes in clinic are urgently needed. In recent years, nano-metals and their oxides have attracted wide attention due to their broad-spectrum antibacterial activity. Nano-silver, nano-copper, nano-zinc and their oxides are gradually applied in biomedical field. In this study, the classification and basic properties of nano-metallic materials such as conductivity, superplasticity, catalysis, and antibacterial activities were firstly introduced. Secondly, the common preparation techniques, including physical, chemical and biological methods, were summarized. Subsequently, four main antibacterial mechanisms, such as cell membrane, oxidative stress, DNA destruction and cell respiration reduction, were summarized. Finally, the effect of size, shape, concentration and surface chemical characteristics of nano-metals and their oxides on antibacterial effectiveness and the research status of biological safety such as cytotoxicity, genotoxicity and reproductive toxicity were reviewed. At present, although nano-metals and their oxides have been applied in medical antibacterial, cancer treatment and other clinical fields, some issues such as the development of green preparation technology, the understanding of antibacterial mechanism, the improvement of biosafety, and the expansion of application fields, require further exploration.
Oxides/chemistry*
;
Metal Nanoparticles/chemistry*
;
Anti-Bacterial Agents/chemistry*
;
Zinc
;
Copper
4.Effects of Platycodonis Radix-Curcumae Rhizoma on oral nanoparticle uptake and in vitro inhibition against breast cancer metastasis.
Jiang-Pei SHI ; Rong-Guang ZHANG ; Xiao-Yan GU ; Ying-Wei SUN ; Nian-Ping FENG ; Ying LIU
China Journal of Chinese Materia Medica 2023;48(9):2419-2425
This study combined the herbal pair Platycodonis Radix-Curcumae Rhizoma(PR-CR) possessing an inhibitory effect on tumor cell proliferation and metastasis with the active component of traditional Chinese medicine(TCM) silibinin-loaded nanoparticles(NPs) with a regulatory effect on tumor microenvironment based on the joint effect on tumor cells and tumor microenvironment to inhi-bit cell metastasis. The effects of PR-CR on the cellular uptake of NPs and in vitro inhibition against breast cancer proliferation and metastasis were investigated to provide an experimental basis for improving nanoparticle absorption and enhancing therapeutic effects. Silibinin-loaded lipid-polymer nanoparticles(LPNs) were prepared by the nanoprecipitation method and characterized by transmission electron microscopy. The NPs were spherical or quasi-spherical in shape with obvious core-shell structure. The mean particle size was 107.4 nm, Zeta potential was-27.53 mV. The cellular uptake assay was performed by in vitro Caco-2/E12 coculture cell model and confocal laser scanning microscopy(CLSM), and the results indicated that PR-CR could promote the uptake of NPs. Further, in situ intestinal absorption assay by the CLSM vertical scanning approach showed that PR-CR could promote the absorption of NPs in the enterocytes of mice. The inhibitory effect of NPs on the proliferation and migration of 4T1 cells was analyzed using 4T1 breast cancer cells and co-cultured 4T1/WML2 cells, respectively. The results of the CCK8 assay showed that PR-CR-containing NPs could enhance the inhibition against the proliferation of 4T1 breast cancer cells. The wound healing assay indicated that PR-CR-containing NPs enhanced the inhibition against the migration of 4T1 breast cancer cells. This study enriches the research on oral absorption of TCM NPs and also provides a new idea for utilizing the advantages of TCM to inhibit breast cancer metastasis.
Humans
;
Mice
;
Animals
;
Female
;
Silybin/therapeutic use*
;
Caco-2 Cells
;
Polymers/chemistry*
;
Nanoparticles/chemistry*
;
Cell Line, Tumor
;
Breast Neoplasms/pathology*
;
Tumor Microenvironment
5.Therapeutic effect of ursodeoxycholic acid-berberine supramolecular nanoparticles on ulcerative colitis based on supramolecular system induced by weak bond.
Shan GAO ; Feng GAO ; Jing-Wei KONG ; Zhi-Jia WANG ; Hao-Cheng ZHENG ; Xin-Qi JIANG ; Shu-Jing XU ; Shan-Lan LI ; Ming-Jun LU ; Zi-Qi DAI ; Fu-Hao CHU ; Bing XU ; Hai-Min LEI
China Journal of Chinese Materia Medica 2023;48(10):2739-2748
Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Ursodeoxycholic Acid/adverse effects*
;
Berberine/pharmacology*
;
Interleukin-6
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Colon
;
Nanoparticles
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Colitis/chemically induced*
6.Preparation and in vitro property evaluation of β-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocrystals.
Yong-Mei GUAN ; Sheng-Hang YE ; Xiang ZHOU ; Zhen-Zhong ZANG ; Li-Hua CHEN ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2023;48(11):2949-2957
This study aims to improve the solubility and bioavailability of daidzein by preparing the β-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocrystals. Specifically, the nanocrystals were prepared with daidzein as a model drug, PEG_(20000), Carbomer_(940), and NaOH as a plasticizer, a gelling agent, and a crosslinking agent, respectively. A two-step method was employed to prepare the β-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocystals. First, the insoluble drug daidzein was embedded in β-cyclodextrin to form inclusion complexes, which were then encapsulated in the PEG_(20000)/Carbomer_(940) nanocrystals. The optimal mass fraction of NaOH was determined as 0.8% by the drug release rate, redispersability, SEM morphology, encapsulation rate, and drug loading. The inclusion status of daidzein nanocrystals was determined by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TGA), and X-ray diffraction(XRD) analysis to verify the feasibility of the preparation. The prepared nanocrystals showed the average Zeta potential of(-30.77±0.15)mV and(-37.47±0.64)mV and the particle sizes of(333.60±3.81)nm and(544.60±7.66)nm before and after daidzein loading, respectively. The irregular distribution of nanocrystals before and after daidzein loading was observed under SEM. The redispersability experiment showed high dispersion efficiency of the nanocrystals. The in vitro dissolution rate of nanocrystals in intestinal fluid was significantly faster than that of daidzein, and followed the first-order drug release kinetic model. XRD, FTIR, and TGA were employed to determine the polycrystalline properties, drug loading, and thermal stability of the nanocrystals before and after drug loading. The nanocrystals loaded with daidzein demonstrated obvious antibacterial effect. The nanocrystals had more significant inhibitory effects on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa than daidzein because of the improved solubility of daidzein. The prepared nanocrystals can significantly increase the dissolution rate and oral bioavailability of the insoluble drug daidzein.
Sodium Hydroxide
;
Acrylic Resins
;
Escherichia coli
;
Nanoparticles
7.Surface modification of multifunctional ferrite magnetic nanoparticles and progress in biomedicine.
Linxue ZHANG ; Nuernisha ALIFU ; Zhongwen LAN ; Zhong YU ; Qifan LI ; Xiaona JIANG ; Chuanjian WU ; Ke SUN
Journal of Biomedical Engineering 2023;40(2):378-383
Magnetic ferrite nanoparticles (MFNPs) have great application potential in biomedical fields such as magnetic resonance imaging, targeted drugs, magnetothermal therapy and gene delivery. MFNPs can migrate under the action of a magnetic field and target specific cells or tissues. However, to apply MFNPs to organisms, further modifications on the surface of MFNPs are required. In this paper, the common modification methods of MFNPs are reviewed, their applications in medical fields such as bioimaging, medical detection, and biotherapy are summarized, and the future application directions of MFNPs are further prospected.
Ferric Compounds
;
Magnetic Resonance Imaging/methods*
;
Magnetics
;
Magnetite Nanoparticles/therapeutic use*
;
Nanoparticles
8.Research progress on the effect of iron oxide nanoparticles in macrophage polarization.
Haojie ZHANG ; Xinyu ZHANG ; Yachan FENG ; Chao DU ; Yingze WANG ; Xueling GUO
Journal of Biomedical Engineering 2023;40(2):384-391
Macrophages are important immune effector cells with significant plasticity and heterogeneity in the body immune system, and play an important role in normal physiological conditions and in the process of inflammation. It has been found that macrophage polarization involves a variety of cytokines and is a key link in immune regulation. Targeting macrophages by nanoparticles has a certain impact on the occurrence and development of a variety of diseases. Due to its characteristics, iron oxide nanoparticles have been used as the medium and carrier for cancer diagnosis and treatment, making full use of the special microenvironment of tumors to actively or passively aggregate drugs in tumor tissues, which has a good application prospect. However, the specific regulatory mechanism of reprogramming macrophages using iron oxide nanoparticles remains to be further explored. In this paper, the classification, polarization effect and metabolic mechanism of macrophages were firstly described. Secondly, the application of iron oxide nanoparticles and the induction of macrophage reprogramming were reviewed. Finally, the research prospect and difficulties and challenges of iron oxide nanoparticles were discussed to provide basic data and theoretical support for further research on the mechanism of the polarization effect of nanoparticles on macrophages.
Humans
;
Macrophages/metabolism*
;
Cytokines
;
Inflammation
;
Neoplasms/metabolism*
;
Nanoparticles
;
Magnetic Iron Oxide Nanoparticles
;
Tumor Microenvironment
9.Progress in the Application of Magnetic Nanoparticles in Forensic Trace Analysis.
Zhong-Ping CHENG ; Yan-Fei LIU ; Xing-Min XU ; Yao-Nan MO
Journal of Forensic Medicine 2023;39(2):168-175
Given the complexity of biological samples and the trace nature of target materials in forensic trace analysis, a simple and effective method is needed to obtain sufficient target materials from complex substrates. Magnetic nanoparticles (MNPs) have shown a wide range of application value in many research fields, such as biomedicine, drug delivery and separation, due to their unique superparamagnetic properties, stable physical and chemical properties, biocompatibility, small size, high specific surface area and other characteristics. To apply MNPs in the pretreatment of forensic materials, maximize the extraction rate of the target materials, and minimize interference factors to meet the requirements of trace analysis of the target materials, this paper reviews the application of MNPs in the fields of forensic toxicological analysis, environmental forensic science, trace evidence analysis and criminal investigation in recent years, and provides research ideas for the application of MNPs in forensic trace analysis.
Magnetite Nanoparticles/chemistry*
;
Forensic Medicine
;
Forensic Sciences
;
Forensic Toxicology
10.Application of organic nanocarriers for intraocular drug delivery.
Wanwan CHANG ; Jingjing SHEN ; Zhuang LIU ; Qian CHEN
Journal of Zhejiang University. Medical sciences 2023;52(3):259-266
The application of intraocular drug delivery is usually limited due to special anatomical and physiological barriers, and the elimination mechanisms in the eye. Organic nano-drug delivery carriers exhibit excellent adhesion, permeability, targeted modification and controlled release abilities to overcome the obstacles and improve the efficiency of drug delivery and bioavailability. Solid lipid nanoparticles can entrap the active components in the lipid structure to improve the stability of drugs and reduce the production cost. Liposomes can transport hydrophobic or hydrophilic molecules, including small molecules, proteins and nucleic acids. Compared with linear macromolecules, dendrimers have a regular structure and well-defined molecular mass and size, which can precisely control the molecular shape and functional groups. Degradable polymer materials endow nano-delivery systems a variety of size, potential, morphology and other characteristics, which enable controlled release of drugs and are easy to modify with a variety of ligands and functional molecules. Organic biomimetic nanocarriers are highly optimized through evolution of natural particles, showing better biocompatibility and lower toxicity. In this article, we summarize the advantages of organic nanocarriers in overcoming multiple barriers and improving the bioavailability of drugs, and highlight the latest research progresses on the application of organic nanocarriers for treatment of ocular diseases.
Drug Carriers
;
Delayed-Action Preparations
;
Drug Delivery Systems
;
Nanoparticles/chemistry*


Result Analysis
Print
Save
E-mail