1.Association of joint effect of overweight and obesity with dyslipidemia on left ventricular hypertrophy in children
AN Silian, LIU Ziqi, ZHANG Qian, ZHAO Min, XI Bo
Chinese Journal of School Health 2025;46(4):474-478
Objective:
To examine the association of joint effect of overweight and obesity with dyslipidemia on left ventricular hypertrophy (LVH) in children, so as to provide scientific evidence for the prevention of early cardiovascular damage in children.
Methods:
Data were obtained from the second followup crosssectional survey of Huantai Childhood Cardiovascular Health Cohort study in 2021, comprising 1 047 children aged 10-15 years with complete information. Based on overweight and obesity status and dyslipidemia status, all participants were divided into four groups:normal weight with normal lipid levels, normal weight with dyslipidemia, overweight and obesity with normal lipid levels, and overweight and obesity with dyslipidemia. Left ventricular mass index (LVMI) levels and prevalence of LVH across four groups were compared. Multivariate Logistic regression model was used to examine the association of joint effect of overweight and obesity with dyslipidemia on LVH in children.
Results:
There were significant differences in LVMI levels [(28.66±7.10, 29.63±4.71,31.49±5.86,32.65±4.80)g/m2.7] and prevalence of LVH (4.28%, 12.50%, 22.74%, 31.30%) across four groups (F/χ2=50.76, 90.92, P<0.05). After adjustment for confounding variables such as gender,age,screen time,sleep duration,fruit and vegetable intake,carbonated beverage consumption,physical activity and elevated blood pressure, compared to children with both normal weight and normal lipid levels, the risk of LVH in children with dyslipidemia alone increased (OR=3.27, 95%CI=1.57-6.82,P<0.05). Children with overweight and obesity alone also had a significantly increased risk of LVH (OR=6.33, 95%CI=3.76-10.66), and the highest risk was observed in those with both overweight and obesity with dyslipidemia (OR=9.66, 95%CI=5.35-17.43) (P<0.05).
Conclusions
The joint effect of overweight and obesity with dyslipidemia is positively correlated with LVH in children. To prevent LVH in children, both overweight and obesity with dyslipidemia should be paid attention to.
2.Association of serum alanine aminotransferase level with left ventricular hypertrophy in adolescents
JIA Peng, ZHAO Min, SUN Jiahong, XI Bo
Chinese Journal of School Health 2025;46(8):1180-1184
Objective:
To investigate the association of serum alanine aminotransferase (ALT) with left ventricular hypertrophy (LVH) in adolescents, and to provide scientific evidence for the early screening and intervention strategy of cardiac structure damage.
Methods:
Data were obtained from the third follow up survey (October 2023) of the "Huantai Childhood Cardiovascular Health Cohort Study", including 1 156 healthy adolescents aged 12-17 with complete information. The sample population was stratified into low ( Q 1 group), medium ( Q 2 group), and high ( Q 3 group) ALT levels based on tertiles within the same gender and age groups. Inter group comparisons were conducted using analysis of variance and trend test. A multivariate Logistic regression model was used to analyze the association between ALT levels and LVH, and stratified analyses were performed by gender and age groups.
Results:
With the increase of ALT quantile level, the detection rate of LVH showed an increasing trend ( Q 1: 3.7%; Q 2: 10.6%; Q 3: 16.7%, Z= 5.89 , P <0.01). After adjusting for potential covariates, compared with the ALT group ( Q 1), the group ( Q 3) increased the risk of developing LVH in adolescents ( OR=2.09, 95%CI =1.21-4.12). Stratified analyses by age and sex showed a significant association only in boys and younger individuals aged 12 to 14 years [ OR (95% CI ) were 2.64(1.04-7.67) and 3.24( 1.35 -9.06), both P <0.05)].
Conclusion
Elevated serum ALT levels are associated with an increased risk of LVH in adolescents, and early detection and control of abnormal liver enzyme levels can help reduce early vascular structural damage and prevent adverse cardiovascular events.
3.Houshihei San Repairs Skeletal Muscle Injury After Ischaemic Stroke by Regulating Ferroptosis Pathway
Hu QI ; Dan TIAN ; Xiongwei ZHANG ; Zeyang ZHANG ; Yuanlin GAO ; Yanning JIANG ; Xinran MIN ; Jiamin ZOU ; Jiuseng ZENG ; Nan ZENG ; Ruocong YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):1-11
ObjectiveTo investigate the pharmacodynamic effects of Houshihei San (HSHS) recorded with the effects of treating wind and limb heaviness on muscle tissue injury after middle cerebral artery occlusion (MCAO) in rats through the ferroptosis pathway. MethodsThirty SD male rats were selected and randomly grouped as follows: sham, MCAO, deferoxamine mesylate, high-dose HSHS (HSHS-H, 0.54 g·kg-1), and low-dose HSHS (HSHS-L, 0.27 g·kg-1), with 6 rats in each group. A laser scattering system was used to evaluate the stability of the MCAO model, and rats were administrated with corresponding agents by gavage for 7 days. During the administration period, behavioral, imaging and other methods were used to systematically evaluate the skeletal muscle tissue injury after MCAO and the therapeutic effect in each administration group. Hematoxylin-eosin staining was employed to evaluate the cross-section of muscle cells. Subsequently, immunohistochemistry was used to detect tumor suppressor p53 and glutathione peroxidase 4 (GPX4) in the soleus tissue. Western blot was employed to determine the protein levels of p53, GPX4, myogenic differentiation 1 (MyoD1), nuclear factor E2-related factor 2 (Nrf2), Myostatin, solute carrier family 7 member 11 (SLC7A11), muscle ring-finger protein-1 (MuRF1), and muscle atrophy F-box protein (MAFbx) to verify the therapeutic effect in each group. ResultsCompared with the MCAO group, HSHS enhanced the locomotor ability and promoted muscle regeneration, which suggested that the pharmacological effects of HSHS were related to the inhibition of muscle tissue ferroptosis to reduce the expression of muscle atrophy factors. Behavioral and imaging results suggested that compared with the MCAO group, HSHS ameliorated neurological impairments in rats on day 7 (P<0.01), enhanced 5-min locomotor distance and postural control (P<0.01), strengthened grasping power and promoted muscle growth (P<0.01), stabilized skeletal muscle length and weight (P<0.01), and increased the cross-section of muscle cells (P<0.01). Compared with the MCAO group, HSHS promoted the increases in glutathione and superoxide dismutase content and inhibited the increase in malondialdehyde content (P<0.05,P<0.01). Ferroptosis pathway-related assays suggested that HSHS reduced the p53-positive cells and increased the GPX4-positive cells (P<0.01). HSHS ameliorated muscle function decline after stroke by promoting the expression of GPX4, Nrf2, SLC7A11, and MyoD1 and inhibiting the expression of p53, Myostatin, MurRF1, and MAFbx to reduce ferroptosis in the muscle (P<0.01). ConclusionHSHS, prepared with reference to the method in the Synopsis of Golden Chamber, can simultaneously reduce the myolysis and increase the protein synthesis in the skeletal muscle tissue after ischemic stroke by regulating the ferroptosis pathway.
4.Study on anti-depression effect of Suanzaoren Decoction based on liver metabolomics.
Jing LI ; Ya-Nan TONG ; Hong-Tao WANG ; Shao-Hua ZHAO ; Wei-Yan CHEN ; Zhi-Wei LI ; Min-Yan LIU
China Journal of Chinese Materia Medica 2025;50(1):19-31
To explore the anti-depression effect of Suanzaoren Decoction(SZRD), the regulatory effects on endogenous metabolites in the liver of rats with depression induced by chronic unpredictable mild stress(CUMS) were analyzed by using LC-MS metabolomics. The rats were randomly divided into normal control group, model group, low-dose SZRD group, high-dose SZRD group, and positive drug group. The CUMS depression model was replicated by applying a variety of stimuli, such as fasting and water deprivation, ice water swimming, hot water swimming, day and night reversal, tail clamping, and restraint for rats. Modeling and treatment were conducted for 56 days. The behavioral indexes of rats in each group, including body weight, open field test, sucrose preference test, and tail suspension test, were observed. Plasma samples and liver tissue samples were collected, and the contents of 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in plasma were measured using enzyme-linked immunosorbent assay(ELISA). Meanwhile, the regulatory effects of SZRD on the liver metabolic profile of CUMS model rats were analyzed by the LC-MS metabolomics method. The results show that SZRD can significantly improve the depression-like behavior of CUMS model rats and increase the neurotransmitter levels of 5-HT, DA, and NE in plasma. A total of 24 different metabolites in the rats' liver are identified using the LC-MS metabolomics method, and SZRD can reverse 13 of these metabolites. Metabolic pathway analysis indicates that nine metabolic pathways are found to be significantly associated with depression, and in the low-dose SZRD group, four pathways can be regulated, including pentose phosphate pathway, purine metabolism, inositol phosphate metabolism, and sphingolipid metabolism. In the high-dose SZRD group, two metabolic pathways can be regulated, including sphingolipid metabolism and glycerol glycerophospholipid metabolism. Sphingolipid metabolism is a metabolic pathway that can be regulated by SZRD at different doses, so it is speculated that it may be the primary pathway through which SZRD can alleviate metabolic disturbances in the liver of CUMS model rats.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Depression/metabolism*
;
Male
;
Liver/drug effects*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/administration & dosage*
;
Serotonin/blood*
;
Humans
;
Disease Models, Animal
;
Behavior, Animal/drug effects*
5.Constructing core outcome set for clinical research on traditional Chinese medicine treatment of post-stroke aphasia.
Ya-Nan MA ; Min-Jie XU ; Yu-Ai YANG ; Jian CHEN ; Qiao-Sheng REN ; Ying LI ; Jing-Ling CHANG
China Journal of Chinese Materia Medica 2025;50(1):238-253
According to the principle and current domestic and international construction processes of core outcome set(COS) and the characteristics of post-stroke aphasia, this study built COS with evidence-based support for traditional Chinese medicine(TCM) treatment of post-stroke aphasia. Firstly, a comprehensive review was conducted on the articles about the TCM treatment of post-stroke aphasia that were published in the four major Chinese databases, three major English databases, and three clinical registration centers over the past five years. The articles were analyzed and summarized, on the basis of which the main part of the COS for clinical research on the TCM treatment of post-stroke aphasia was formed. Secondly, clinical doctors and related nursing personnel were interviewed, and important outcome indicators in the clinical diagnosis and treatment process were supplemented to form a pool of core outcome indicators. Two rounds of Delphi surveys were carried out to score the importance of the core outcome indicators in the pool. Finally, a consensus meeting of experts was held to establish the COS for clinical research on the TCM treatment of post-stroke aphasia. The final COS included a total of 268 studies [236 randomized controlled trials(RCTs), 21 Meta-analysis, and 11 clinical registration protocols] and 20 open questionnaire survey results. After two rounds of Delphi surveys, a total of 14 outcome indicators and their corresponding measurement tools were included in the expert consensus meeting. The final expert consensus meeting determined the COS for post-stroke aphasia, which included 9 indicator domains and 12 outcome indicators.
Humans
;
Aphasia/therapy*
;
Stroke/complications*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Treatment Outcome
6.Current status and suggestions on regulation of traditional Chinese medicine raw materials and preparations under regulatory system of drugs.
Li-Ping QU ; Yong-Dan XU ; Wei-Jing HE ; Ding-Kun ZHANG ; Nan YANG ; Min-Xian SONG ; Zhi-Qiang MIN ; Ting-Mo ZHANG
China Journal of Chinese Materia Medica 2025;50(3):824-832
At present, the cause of traditional Chinese medicine(TCM) in China has entered a new period of high-quality development. How to strengthen the foundation for the TCM industry from the source is an important issue that deserves the attention of the authorities, industry, and academia. This study systematically analyzed the regulatory system of TCM raw materials and preparations. The study took the TCM industry chain and the product life cycle as a clue and focused on the dimensions of TCM resource protection and plant cultivation(farming), production and quality supervision of TCM raw materials and preparations, and their market access and distribution. It analyzed the current situation of the regulation of TCM raw materials and preparations under the regulatory system of drugs, discussed the main problems, and put forward corresponding suggestions. The results can provide an important reference value for the subsequent improvement of the regulatory system of drugs and the construction of a prominent regulatory system of drugs in accordance with TCM characteristics.
Drugs, Chinese Herbal/economics*
;
Medicine, Chinese Traditional/standards*
;
China
;
Quality Control
;
Humans
;
Plants, Medicinal/chemistry*
7.Pharmacological effect and mechanism of tannic acids in Paeoniae Radix Alba.
Jia-Xin DIAO ; Qi-Tong ZHENG ; Meng-Yao CHEN ; Jiang-Chuan HONG ; Min HAO ; Qing-Mei FENG ; Jun-Qi HU ; Xia-Nan SANG ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(6):1471-1483
The chemical composition of Paeoniae Radix Alba(PRA) is complex, with primary secondary metabolites including monoterpenoids, tannins, triterpenoids, and flavonoids. In previous studies on the material basis of PRA, it was found that, in addition to the widely studied characteristic monoterpene glycosides, tannic acid components also play an important role in the efficacy of PRA. However, their pharmacological effects have not been thoroughly investigated. This paper reviews the tannic acid components in PRA, including pentagaloyl glucose(PGG), tetragaloyl glucose(TGG), trigaloyl glucose(TriGG), and gallic acid, along with their structures, properties, and characteristics to provide a detailed discussion of their pharmacological activities and related mechanisms, aiming to offer a theoretical basis for the material basis research and clinical application of PRA.
Paeonia/chemistry*
;
Tannins/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Plant Extracts
8.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
9.Dimethyloxalylglycine improves functional recovery through inhibiting cell apoptosis and enhancing blood-spinal cord barrier repair after spinal cord injury.
Wen HAN ; Chao-Chao DING ; Jie WEI ; Dan-Dan DAI ; Nan WANG ; Jian-Min REN ; Hai-Lin CHEN ; Ling XIE
Chinese Journal of Traumatology 2025;28(5):361-369
PURPOSE:
The secondary damage of spinal cord injury (SCI) starts from the collapse of the blood spinal cord barrier (BSCB) to chronic and devastating neurological deficits. Thereby, the retention of the integrity and permeability of BSCB is well-recognized as one of the major therapies to promote functional recovery after SCI. Previous studies have demonstrated that activation of hypoxia inducible factor-1α (HIF-1α) provides anti-apoptosis and neuroprotection in SCI. Endogenous HIF-1α, rapidly degraded by prolylhydroxylase, is insufficient for promoting functional recovery. Dimethyloxalylglycine (DMOG), a highly selective inhibitor of prolylhydroxylase, has been reported to have a positive effect on axon regeneration. However, the roles and underlying mechanisms of DMOG in BSCB restoration remain unclear. Herein, we aim to investigate pathological changes of BSCB restoration in rats with SCI treated by DOMG and evaluate the therapeutic effects of DMOG.
METHODS:
The work was performed from 2022 to 2023. In this study, Allen's impact model and human umbilical vein endothelial cells were employed to explore the mechanism of DMOG. In the phenotypic validation experiment, the rats were randomly divided into 3 groups: sham group, SCI group, and SCI + DMOG group (10 rats for each). Histological analysis via Nissl staining, Basso-Beattie-Bresnahan scale, and footprint analysis was used to evaluate the functional recovery after SCI. Western blotting, TUNEL assay, and immunofluorescence staining were employed to exhibit levels of tight junction and adhesion junction of BSCB, HIF-1α, cell apoptosis, and endoplasmic reticulum (ER) stress. The one-way ANOVA test was used for statistical analysis. The difference was considered statistically significant at p < 0.05.
RESULTS:
In this study, we observed the expression of HIF-1α reduced in the SCI model. DMOG treatment remarkably augmented HIF-1α level, alleviated endothelial cells apoptosis and disruption of BSCB, and enhanced functional recovery post-SCI. Besides, the administration of DMOG offset the activation of ER stress induced by SCI, but this phenomenon was blocked by tunicamycin (an ER stress activator). Finally, we disclosed that DMOG maintained the integrity and permeability of BSCB by inhibiting ER stress, and inhibition of HIF-1α erased the protection from DMOG.
CONCLUSIONS
Our findings illustrate that the administration of DMOG alleviates the devastation of BSCB and HIF-1α-induced inhibition of ER stress.
Spinal Cord Injuries/pathology*
;
Animals
;
Apoptosis/drug effects*
;
Amino Acids, Dicarboxylic/therapeutic use*
;
Recovery of Function/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Male
;
Spinal Cord/blood supply*
10.Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411).
Xue-Hai ZHOU ; Min-Min HUA ; Jia-Nan TANG ; Bang-Guo WU ; Xue-Mei WANG ; Chang-Gen SHI ; Yang YANG ; Jun WU ; Bin WU ; Bao-Li ZHANG ; Yi-Si SUN ; Tian-Cheng ZHANG ; Hui-Juan SHI
Asian Journal of Andrology 2025;27(1):120-128
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Animals
;
Female
;
Humans
;
Male
;
Mice
;
Spermatids/metabolism*
;
Spermatogenesis/physiology*
;
Spermatozoa/metabolism*
;
Thioredoxins/genetics*


Result Analysis
Print
Save
E-mail