1.Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer
Ji Eun BAEK ; Hahn YI ; Seung Wook HONG ; Subin SONG ; Ji Young LEE ; Sung Wook HWANG ; Sang Hyoung PARK ; Dong-Hoon YANG ; Byong Duk YE ; Seung-Jae MYUNG ; Suk-Kyun YANG ; Namkug KIM ; Jeong-Sik BYEON
Gut and Liver 2025;19(1):69-76
Background/Aims:
Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.
Methods:
We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.
Results:
Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).
Conclusions
AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.
2.Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer
Ji Eun BAEK ; Hahn YI ; Seung Wook HONG ; Subin SONG ; Ji Young LEE ; Sung Wook HWANG ; Sang Hyoung PARK ; Dong-Hoon YANG ; Byong Duk YE ; Seung-Jae MYUNG ; Suk-Kyun YANG ; Namkug KIM ; Jeong-Sik BYEON
Gut and Liver 2025;19(1):69-76
Background/Aims:
Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.
Methods:
We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.
Results:
Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).
Conclusions
AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.
3.Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer
Ji Eun BAEK ; Hahn YI ; Seung Wook HONG ; Subin SONG ; Ji Young LEE ; Sung Wook HWANG ; Sang Hyoung PARK ; Dong-Hoon YANG ; Byong Duk YE ; Seung-Jae MYUNG ; Suk-Kyun YANG ; Namkug KIM ; Jeong-Sik BYEON
Gut and Liver 2025;19(1):69-76
Background/Aims:
Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.
Methods:
We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.
Results:
Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).
Conclusions
AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.
4.Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer
Ji Eun BAEK ; Hahn YI ; Seung Wook HONG ; Subin SONG ; Ji Young LEE ; Sung Wook HWANG ; Sang Hyoung PARK ; Dong-Hoon YANG ; Byong Duk YE ; Seung-Jae MYUNG ; Suk-Kyun YANG ; Namkug KIM ; Jeong-Sik BYEON
Gut and Liver 2025;19(1):69-76
Background/Aims:
Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.
Methods:
We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.
Results:
Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).
Conclusions
AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.
5.Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm:A multicenter study
Sung-Hoon HAN ; Jisup LIM ; Jun-Sik KIM ; Jin-Hyoung CHO ; Mihee HONG ; Minji KIM ; Su-Jung KIM ; Yoon-Ji KIM ; Young KIM ; Sung-Hoon LIM ; Sang Jin SUNG ; Kyung-Hwa KANG ; Seung-Hak BAEK ; Sung-Kwon CHOI ; Namkug KIM
The Korean Journal of Orthodontics 2024;54(1):48-58
Objective:
To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN).
Methods:
A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed.
Results:
The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs.1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANSmid, UDM-mid, and LDM-mid compared with the gold standard.
Conclusions
The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.
6.Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging
Kiduk KIM ; Gil-Sun HONG ; Namkug KIM
Journal of the Korean Society of Radiology 2024;85(5):848-860
The recent advent of large language models (LLMs), such as ChatGPT, has drawn attention to generative artificial intelligence (AI) in a number of fields. Generative AI can produce different types of data including text, images, and voice, depending on the training methods and datasets used. Additionally, recent advancements in multimodal techniques, which can simultaneously process multiple data types like text and images, have expanded the potential of using multimodal generative AI in the medical environment where various types of clinical and imaging information are used together. This review summarizes the concepts and types of LLMs, image generative AI, and multimodal AI, and it examines the status and future possibilities of generative AI in the field of radiology.
7.Image-Based Generative Artificial Intelligence in Radiology: Comprehensive Updates
Ha Kyung JUNG ; Kiduk KIM ; Ji Eun PARK ; Namkug KIM
Korean Journal of Radiology 2024;25(11):959-981
Generative artificial intelligence (AI) has been applied to images for image quality enhancement, domain transfer, and augmentation of training data for AI modeling in various medical fields. Image-generative AI can produce large amounts of unannotated imaging data, which facilitates multiple downstream deep-learning tasks. However, their evaluation methods and clinical utility have not been thoroughly reviewed. This article summarizes commonly used generative adversarial networks and diffusion models. In addition, it summarizes their utility in clinical tasks in the field of radiology, such as direct image utilization, lesion detection, segmentation, and diagnosis. This article aims to guide readers regarding radiology practice and research using image-generative AI by 1) reviewing basic theories of image-generative AI, 2) discussing the methods used to evaluate the generated images, 3) outlining the clinical and research utility of generated images, and 4) discussing the issue of hallucinations.
8.Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging
Kiduk KIM ; Gil-Sun HONG ; Namkug KIM
Journal of the Korean Society of Radiology 2024;85(5):848-860
The recent advent of large language models (LLMs), such as ChatGPT, has drawn attention to generative artificial intelligence (AI) in a number of fields. Generative AI can produce different types of data including text, images, and voice, depending on the training methods and datasets used. Additionally, recent advancements in multimodal techniques, which can simultaneously process multiple data types like text and images, have expanded the potential of using multimodal generative AI in the medical environment where various types of clinical and imaging information are used together. This review summarizes the concepts and types of LLMs, image generative AI, and multimodal AI, and it examines the status and future possibilities of generative AI in the field of radiology.
9.Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis
Bon San KOO ; Miso JANG ; Ji Seon OH ; Keewon SHIN ; Seunghun LEE ; Kyung Bin JOO ; Namkug KIM ; Tae-Hwan KIM
Journal of Rheumatic Diseases 2024;31(2):97-107
Objective:
Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progression to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of machine learning models to predict radiographic progression in AS patients using time-series data from electronic medical records (EMRs).
Methods:
EMR data, including baseline characteristics, laboratory findings, drug administration, and modified Stoke AS Spine Score (mSASSS), were collected from 1,123 AS patients between January 2001 and December 2018 at a single center at the time of first (T1 ), second (T2 ), and third (T3 ) visits. The radiographic progression of the (n+1)th visit (Pn+1 =(mSASSSn+1 –mSASSSn )/(Tn+1 – Tn )≥1 unit per year) was predicted using follow-up visit datasets from T1 to Tn . We used three machine learning methods (logistic regression with the least absolute shrinkage and selection operation, random forest, and extreme gradient boosting algorithms) with three-fold cross-validation.
Results:
The random forest model using the T1 EMR dataset best predicted the radiographic progression P2 among the machine learning models tested with a mean accuracy and area under the curves of 73.73% and 0.79, respectively. Among the T1 variables, the most important variables for predicting radiographic progression were in the order of total mSASSS, age, and alkaline phosphatase.
Conclusion
Prognosis predictive models using time-series data showed reasonable performance with clinical features of the first visit dataset when predicting radiographic progression.
10.Image-Based Generative Artificial Intelligence in Radiology: Comprehensive Updates
Ha Kyung JUNG ; Kiduk KIM ; Ji Eun PARK ; Namkug KIM
Korean Journal of Radiology 2024;25(11):959-981
Generative artificial intelligence (AI) has been applied to images for image quality enhancement, domain transfer, and augmentation of training data for AI modeling in various medical fields. Image-generative AI can produce large amounts of unannotated imaging data, which facilitates multiple downstream deep-learning tasks. However, their evaluation methods and clinical utility have not been thoroughly reviewed. This article summarizes commonly used generative adversarial networks and diffusion models. In addition, it summarizes their utility in clinical tasks in the field of radiology, such as direct image utilization, lesion detection, segmentation, and diagnosis. This article aims to guide readers regarding radiology practice and research using image-generative AI by 1) reviewing basic theories of image-generative AI, 2) discussing the methods used to evaluate the generated images, 3) outlining the clinical and research utility of generated images, and 4) discussing the issue of hallucinations.

Result Analysis
Print
Save
E-mail