1.Modulation of Ryanodine Receptors on Microglial Ramification, Migration, and Phagocytosis in an Alzheimer's Disease Mouse Model.
Yulin OUYANG ; Zihao CHEN ; Qiang HUANG ; Hai ZHANG ; Haolin SONG ; Xinnian WANG ; Wenxiu DONG ; Yong TANG ; Najeebullah SHAH ; Shimin SHUAI ; Yang ZHAN
Neuroscience Bulletin 2025;41(11):2063-2077
Microglial functions are linked to Ca2+ signaling, with endoplasmic reticulum (ER) calcium stores playing a crucial role. Microglial abnormality is a hallmark of Alzheimer's disease (AD), but how ER Ca2+ receptors regulate microglial functions under physiological and AD conditions remains unclear. We found reduced ryanodine receptor 2 (Ryr2) expression in microglia from an AD mouse model. Modulation of RyR2 using S107, a RyR-Calstabin stabilizer, blunted spontaneous Ca2+ transients in controls and normalized Ca2+ transients in AD mice. S107 enhanced ATP-induced migration and phagocytosis while reducing ramification in control microglia; however, these effects were absent in AD microglia. Our findings indicate that RyR2 stabilization promotes an activation state shift in control microglia, a mechanism impaired in AD. These results highlight the role of ER Ca2+ receptors in both homeostatic and AD microglia, providing insights into microglial Ca2+ malfunctions in AD.
Animals
;
Microglia/pathology*
;
Alzheimer Disease/pathology*
;
Phagocytosis/drug effects*
;
Ryanodine Receptor Calcium Release Channel/metabolism*
;
Disease Models, Animal
;
Mice
;
Cell Movement/drug effects*
;
Mice, Transgenic
;
Calcium Signaling/physiology*
;
Calcium/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Endoplasmic Reticulum/metabolism*

Result Analysis
Print
Save
E-mail