1.Study on the effect of ATPIF1 on the anti-tumor activity of CAR-NK92 cells by regulating glycolytic capacity.
Biao LIU ; Xue GONG ; Biliang HU ; Chunlei GUO ; Genshen ZHONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):865-874
Objective To investigate the effect of ATP synthase inhibitory factor 1 (ATPIF1) on the antitumor activity of chimeric antigen receptor (CAR)-NK92 cells. Methods HER2-targeted CAR-NK92 cells with ATPIF1 overexpression or knockdown were constructed. CAR-positive expression rate was detected by flow cytometry. Cell proliferation capacity was measured using CCK-8 assay. Glycolytic capacity was analyzed by Seahorse metabolic analyzer. Mitochondrial membrane potential levels were detected using JC-1 probe. Target cell lysis rate was evaluated by firefly luciferase reporter assay. Expression levels of CD107a, natural-killer group 2 member D (NKG2D), granzyme B (GzmB), perforin, and interleukin 2 (IL-2) were detected via flow cytometry. Quantitative real-time PCR was used to measure the expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), tumor necrosis factor α (TNF-α), ATPIF1, and hexokinase 1 (HK1). The impact of glycolytic inhibition by 2-Deoxy-D-glucose (2-DG) on CAR-NK92 antitumor capacity was examined. Results Successfully generated HER2-targeting control CAR-NK92 cells, as well as ATPIF1-overexpressing and ATPIF1 knockdown CAR-NK92 cells. The ATPIF1-overexpressing CAR-NK92 cells showed significantly enhanced target cell lysis rate, elevated expression levels of NKG2D and CD107a, increased secretion capacities of Granzyme B (GzmB) and IL-2, and upregulated mRNA expression levels of IFIT1 and TNF-α, while ATPIF1-knockdown cells exhibited opposite effects. ATPIF1 overexpression induced metabolic reprogramming in CAR-NK92 cells, manifested by significantly decreased mitochondrial membrane potential (δpsim), markedly upregulated HK1 mRNA expression, and enhanced basal glycolysis and glycolytic capacity. After glycolysis inhibition with 2-DG (5 μmol/L), both ATPIF1-overexpressing and knockdown CAR-NK92 cells showed no significant differences in NKG2D and CD107a expression levels compared to control cells. Conclusion ATPIF1 regulates the antitumor activity of CAR-NK92 cells through modulating glycolytic metabolism. Overexpression of ATPIF1 can enhance the antitumor efficacy of CAR-NK92 cells.
Humans
;
Glycolysis
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Granzymes/genetics*
;
Hexokinase/metabolism*
;
Cell Line, Tumor
;
Interleukin-2/genetics*
;
Cell Proliferation
;
NK Cell Lectin-Like Receptor Subfamily K/genetics*
;
Membrane Potential, Mitochondrial
2.Knocking Out DNMT1 Enhances the Inhibitory Effect of NK Cells on Acute Myeloid Leukemia.
Kun WU ; Jia-Li HUANG ; Shen-Ju CHENG ; Yan-Hong LI ; Yun ZENG ; Ming-Xia SHI
Journal of Experimental Hematology 2025;33(3):653-659
OBJECTIVE:
To explore the effect and mechanism of DNA methyltransferase 1 (DNMT1) knockout on the inhibition of acute myeloid leukemia (AML) by natural killer (NK) cells.
METHODS:
The peripheral blood NK cells of AML patients and controls were collected, and the mRNA and protein level of DNMT1 were measured by PCR and Western blot, respectively. The DNMT1 knockout mice were constructed to obtain NKDNMT1-/- cells. The NK cells were stimulated with interleukin (IL)-12, IL-15, and IL-18 to construct memory NK cells, and then the interferon-γ (IFN-γ) levels were measured by ELISA. After co-culturing with memory NK cells and HL60 cells, the killing effect of NKDNMT1-/- cells on HL60 cells was detected by LDH assay. Then, the HL60 cell apoptosis and NK cell NKG2D level were measured by flow cytometry. The perforin and granzyme B protein levels of NK cells were measured by Western blot. The AML model mice were constructed by injecting HL60 cells into the tail vein, meanwhile, memory NK cells were also injected, and then the mouse weights, CD33 positive rates, and survival time were detected.
RESULTS:
The mRNA and protein levels of DNMT1 in NK cells of AML patients were significantly higher than those in the control group (both P < 0.01), while the IFN-γ level induced by interleukin was significantly lower than that in the control group (P < 0.05). Compared with NKDNMT1+/+ cells, the ability of NKDNMT1-/- cells to secrete IFN-γ after interleukin stimulation was significantly increased (P < 0.05). The killing and apoptosis-inducing effects of NKDNMT1-/- cells on HL60 cells were significantly stronger than those of NKDNMT1+/+ cells (both P < 0.05). The NKG2D level and expression of perforin and granzyme B of NKDNMT1-/- cells were significantly increased compared with NKDNMT1+/+ cells (all P < 0.05). Compared with AML mice injected with NKDNMT1+/+ cells, AML mice injected with NKDNMT1-/- cells showed significantly increased body weight, decreased CD33 positive rate, and prolonged survival time (all P < 0.05).
CONCLUSION
Knocking out DNMT1 can enhance the inhibitory effect of NK cells on AML, which may be related to enhancing NK cell memory function.
Killer Cells, Natural/metabolism*
;
Animals
;
Leukemia, Myeloid, Acute
;
Humans
;
DNA (Cytosine-5-)-Methyltransferase 1
;
Mice
;
Mice, Knockout
;
HL-60 Cells
;
Apoptosis
;
Interferon-gamma/metabolism*
;
Granzymes/metabolism*
;
Perforin/metabolism*
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
3.Construction of NKG2D CAR-NK92 cells and its killing effect on multiple myeloma cells.
Jing LONG ; Rong ZHENG ; Sishi YE ; Shanwen KE ; Deming DUAN ; Cheng WEI ; Jimin GAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):577-585
Objective This study aims to construct and identify the chimeric antigen receptor NK92 (CAR-NK92) cells targeting NKG2D ligand (NKG2DL) (secreting IL-15Ra-IL-15) and verify the killing activity of NKG2D CAR-NK92 cells against multiple myeloma cells. Methods The extracellular segment of NKG2D was employed to connect 4-1BB and CD3Z, as well as IL-15Ra-IL-15 sequence to obtain a CAR expression framework. The lentivirus was packaged and transduced into NK92 cells to obtain NKG2D CAR-NK92 cells. The proliferation of NKG2D CAR-NK92 cells was detected by CCK-8 assay, IL-15Ra secretion was detected by ELISA and killing efficiency was detected by lactate dehydrogenase (LDH) assay. The molecular markers of NKp30, NKp44, NKp46, the ratio of apoptotic cell population, CD107a, and the secretion level of granzyme B and perforin were detected using flow cytometry. In addition, the cytotoxic mechanism of NKG2D CAR-NK92 cells on the tumor was verified by measuring the degranulation ability. Moreover, after NKG2D antibody inhibited effector cells and histamine inhibited tumor cells, LDH assay was utilized to detect the effect on cell-killing efficiency. Finally, the multiple myeloma tumor xenograft model was constructed to verify its anti-tumor activity in vivo. Results Lentiviral transduction significantly increased NKG2D expression in NK92 cells. Compared with NK92 cells, the proliferation ability of NKG2D CAR-NK92 cells was weaker. The early apoptotic cell population of NKG2D CAR-NK92 cells was less, and NKG2D CAR-NK92 cells had stronger cytotoxicity to multiple myeloma cells. Additionally, IL-15Ra secretion could be detected in its culture supernatant. NKp44 protein expression in NKG2D CAR-NK92 cells was clearly increased, demonstrating an enhanced activation level. Inhibition test revealed that the cytotoxicity of CAR-NK92 cells to MHC-I chain-related protein A (MICA) and MICB-positive tumor cells was more dependent on the interaction between NKG2D CAR and NKG2DL. After stimulating NKG2D CAR-NK92 cells with tumor cells, granzyme B and perforin expression increased, and NK cells obviously upregulated CD107α. Furthermore, multiple myeloma tumor xenograft model revealed that the tumors of mice treated with NKG2D CAR-NK92 cells were significantly reduced, and the cell therapy did not sensibly affect the weight of the mice. Conclusion A type of CAR-NK92 cell targeting NKG2DL (secreting IL-15Ra-IL-15) is successfully constructed, indicating the effective killing of multiple myeloid cells.
Humans
;
Mice
;
Animals
;
Receptors, Chimeric Antigen/genetics*
;
Interleukin-15
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
;
Granzymes
;
Cell Line, Tumor
;
Multiple Myeloma/therapy*
;
Perforin
4.Expression Level of SOCS3 in Acute Lymphoblastic Leukemia Cells Affects the Cytotoxicity of NK Cells.
Bing TANG ; Yong-Ge LI ; Lin CHENG ; Hui-Bing DANG
Journal of Experimental Hematology 2022;30(2):400-406
OBJECTIVE:
To detect the expression level of suppressors of cytokine signaling 3 (SOCS3) in acute lymphoblastic leukemia (ALL), and to observe the effect of over-expresson of SOCS3 in Jurkat cells on the cytotoxicity of NK cells.
METHODS:
The expression levels of SOCS3 mRNA in peripheral blood mononuclear cells of 20 children with ALL and 20 healthy children (normal control group) were detected by RT-PCR. The peripheral blood NK cells from healthy subjects were selected by immunomagnetic technique, and the purity was detected by flow cytometry. SOCS3 was overexpressed in Jurkat cells infected with lentivirus vector, and SOCS3 mRNA expression was detected by RT-PCR after lentivirus infection. The NK cells were co-cultured with the infected Jurkat, and LDH release method was used to detect the cytotoxicity of NK cells on the infected Jurkat cells. The concentrations of TNF-α and IFN-γ were determined by ELISA. The expression of NKG2D ligands MICA and MICB on the surface of Jurkat cells were detected by flow cytometry. Western blot was used to detect the effect of SOCS3 overexpression on STAT3 phosphorylation in Jurkat cells.
RESULTS:
Compared with the control group, the mRNA expression of SOCS3 in the peripheral blood mononucleated cells of ALL children was significantly decreased. The purity of NK cells isolated by flow cytometry could reach more than 70%. The expression of SOCS3 mRNA in Jurkat cells increased significantly after lentivirus infection. Overexpression of SOCS3 in Jurkat cells significantly promoted the killing ability of NK cells and up-regulated the secretion of TNF-α and IFN-γ from NK cells. The results of flow cytometry showed that the expression of NKG2D ligands MICA and MICB on Jurkat cells increased significantly after SOCS3 overexpression. Western blot results showed that overexpression of SOCS3 significantly reduced the phosphorylation level of STAT3 protein in Jurkat cells.
CONCLUSION
SOCS3 mRNA expression was significantly decreased in ALL patients, and overexpression of SOCS3 may up-regulate the expression of MICA and MICB of NKG2D ligands on Jurkat cell surface through negative regulation of JAK/STAT signaling pathway, thereby promoting the cytotoxic function of NK cells.
Child
;
Histocompatibility Antigens Class I/metabolism*
;
Humans
;
Killer Cells, Natural/cytology*
;
Leukocytes, Mononuclear/cytology*
;
Ligands
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
RNA, Messenger/genetics*
;
Suppressor of Cytokine Signaling 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Microwave-induced Apoptosis and Cytotoxicity of NK Cells through ERK1/2 Signaling.
Li ZHAO ; Jing LI ; Yan Hui HAO ; Ya Bing GAO ; Shui Ming WANG ; Jing ZHANG ; Ji DONG ; Hong Mei ZHOU ; Shu Chen LIU ; Rui Yun PENG
Biomedical and Environmental Sciences 2017;30(5):323-332
OBJECTIVETo investigate microwave-induced morphological and functional injury of natural killer (NK) cells and uncover their mechanisms.
METHODSNK-92 cells were exposed to 10, 30, and 50 mW/cm2 microwaves for 5 min. Ultrastructural changes, cellular apoptosis and cell cycle regulation were detected at 1 h and 24 h after exposure. Cytotoxic activity was assayed at 1 h after exposure, while perforin and NKG2D expression were detected at 1 h, 6 h, and 12 h after exposure. To clarify the mechanisms, phosphorylated ERK (p-ERK) was detected at 1 h after exposure. Moreover, microwave-induced cellular apoptosis and cell cycle regulation were analyzed after blockade of ERK signaling by using U0126.
RESULTSMicrowave-induced morphological and ultrastructural injury, dose-dependent apoptosis (P < 0.001) and cell cycle arrest (P < 0.001) were detected at 1 h after microwave exposure. Moreover, significant apoptosis was still detected at 24 h after 50 mW/cm2 microwave exposure (P < 0.01). In the 30 mW/cm2 microwave exposure model, microwaves impaired the cytotoxic activity of NK-92 cells at 1 h and down regulated perforin protein both at 1 h and 6 h after exposure (P < 0.05). Furthermore, p-ERK was down regulated at 1 h after exposure (P < 0.05), while ERK blockade significantly promoted microwave-induced apoptosis (P < 0.05) and downregulation of perforin (P < 0.01).
CONCLUSIONMicrowave dose-dependently induced morphological and functional injury in NK-92 cells, possibly through ERK-mediated regulation of apoptosis and perforin expression.
Apoptosis ; radiation effects ; Cell Cycle ; radiation effects ; Cell Line ; Dose-Response Relationship, Radiation ; Down-Regulation ; Humans ; Killer Cells, Natural ; radiation effects ; MAP Kinase Signaling System ; Microwaves ; adverse effects ; NK Cell Lectin-Like Receptor Subfamily K ; genetics ; metabolism ; Signal Transduction
6.Up-regulation of NKG2A inhibitory receptor on circulating NK cells contributes to transfusion-induced immunodepression in patients with β-thalassemia major.
Yong ZOU ; Zhi-Xing SONG ; Ying LU ; Xiao-Li LIANG ; Qing YUAN ; Si-Hong LIAO ; Jun-Jie BAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):509-513
Accumulating evidence has shown that allogeneic blood transfusions can induce significant immunosuppression in recipients, and thereby increase the risk of postoperative infection and/or tumor relapse. Although it is well known that natural killer (NK) cells are responsible for the immunodepression effects of transfusion, the underlying mechanisms remain obscure. In this study, we investigated the role of NK cells in transfusion-induced immunodepression in β-thalassemia major. The proportion of circulating NK cells and the expression of NK receptors (NKG2A, CD158a, NKP30, NKP46 and NKG2D) as well as CD107a were detected by multicolor flow cytometry. IFN-γ production by circulating NK cells was detected by intracellular cytokine staining. Our results showed that the proportion and cytotoxicity (CD107a expression) of circulating NK cells in transfusion-dependent β-thalassemia major patients were remarkably lower than those of β-thalassemia minor patients or healthy volunteers. Expression of NKG2A inhibitory receptor on circulating NK cells in patients with β-thalassemia major was remarkably up-regulated, but there were no significant differences in the expression levels of NKP30, NKP46, NKG2D, CD158a and IFN-γ. These results indicate NKG2A inhibitory receptor may play a key role in transfusion-induced immunodepression of NK cells in patients with β-thalassemia major.
Adolescent
;
Child
;
Female
;
Flow Cytometry
;
Gene Expression Regulation
;
Humans
;
Immunosuppression
;
Killer Cells, Natural
;
immunology
;
metabolism
;
Male
;
NK Cell Lectin-Like Receptor Subfamily C
;
blood
;
immunology
;
NK Cell Lectin-Like Receptor Subfamily K
;
blood
;
immunology
;
Natural Cytotoxicity Triggering Receptor 1
;
blood
;
immunology
;
Natural Cytotoxicity Triggering Receptor 3
;
blood
;
immunology
;
Receptors, KIR2DL1
;
blood
;
immunology
;
Transfusion Reaction
;
beta-Thalassemia
;
blood
;
immunology
;
pathology
7.Study of NK cells dysfunction in multiple myeloma patients.
Wenmin HAN ; Xiuwen ZHANG ; Zhuxia JIA ; Jinyuan HE ; Hongying CHAO ; Jianhe YANG ; Rong XIAO ; Xuzhang LU
Chinese Journal of Hematology 2015;36(11):922-925
OBJECTIVETo explore the mechanism of NK cell dysfunction in patients with multiple myeloma (MM).
METHODSThe expression of inhibitory receptors (CD158a and CD158b) and activating receptors NKG2D and NCRs (NKp30, NKp44 and NKp46) on CD3-CD56+NK cell of 13 MM patients and 30 healthy controls were analyzed by flow cytometry. The concentration of soluble NKG2D ligands (MICA, MICB, ULBP1, ULBP2 and ULBP3) in serum was detected by enzyme- linked immunosorbent assay (ELISA), and the cytotoxicity of NK cell against MM cell line by flow cytometry.
RESULTSThere are no significant differences of percentage and absolute number of NK cells, and the expression level of CD158a and CD158b between MM patients and healthy individuals (P>0.05). No NKp44 expression was detected on fresh isolated NK cells from both groups. There is no difference in inhibitor receptors expression between MM patients and healthy individuals but the expression of NKG2D, NKp30 and NKp46 on NK cells were higher in MM patients as compared with that in healthy individuals. The concentration of soluble NKG2D ligands in serum was higher in MM patients as compared with that in healthy individuals (P<0.05). Cultured healthy individual's NK cells with MM patient's serum could significantly decrease its cytotoxicity against MM cell line U266 cells [(38.5 ± 6.5) % vs (25.4 ± 5.9)%, P=0.044].
CONCLUSIONThe higher level of soluble NKG2D ligands in serum may be the mechanism of NK cell dysfunction in MM patient.
Cells, Cultured ; Flow Cytometry ; Humans ; Killer Cells, Natural ; metabolism ; pathology ; Multiple Myeloma ; immunology ; metabolism ; NK Cell Lectin-Like Receptor Subfamily K ; metabolism ; Natural Cytotoxicity Triggering Receptor 1 ; metabolism ; Natural Cytotoxicity Triggering Receptor 2 ; metabolism ; Natural Cytotoxicity Triggering Receptor 3 ; metabolism ; Receptors, KIR2DL1 ; metabolism ; Receptors, KIR2DL3 ; metabolism
8.The Correlation between NK Cell and Liver Function in Patients with Primary Hepatocellular Carcinoma.
Wei Hong SHA ; Xiao Hui ZENG ; Lu MIN
Gut and Liver 2014;8(3):298-305
BACKGROUND/AIMS: This study aimed to detect the expression of natural killer (NK) cell receptor natural killer group 2D (NKG2D) in the peripheral blood of patients with primary hepatocellular carcinoma and to discuss the correlation between NK cell cytotoxicity and liver function. METHODS: The number of NK cells and the expression of NK cell receptor NKG2D in peripheral blood were determined by flow cytometry in patients with primary hepatocellular carcinoma, hepatitis B cirrhosis, chronic hepatitis B, and healthy controls. RESULTS: When compared with patients in the healthy and the chronic hepatitis B groups, the primary hepatocellular carcinoma group showed significant decreases in all parameters, including the cytotoxicity of NK cells on K562 cells, expression rate of NKG2D in NK cells, number of NKG2D+ NK cells, expression level of NKG2D, and number of NK cells (p<0.05). The activity of NK cells showed a positive correlation, whereas the Child-Pugh scores in the primary hepatocellular carcinoma and the hepatitis B cirrhosis groups showed a negative correlation with all parameters detected above. CONCLUSIONS: The decrease of NK cell activity in patients with primary hepatocellular carcinoma is closely related to their lower expression of NKG2D. Liver function affects the expression of NKG2D and the activity of NK cells.
Carcinoma, Hepatocellular/*physiopathology
;
Case-Control Studies
;
Female
;
Humans
;
K562 Cells
;
Killer Cells, Natural/*physiology
;
Liver Neoplasms/*physiopathology
;
Lymphocyte Subsets/physiology
;
Lymphopenia/physiopathology
;
Male
;
Middle Aged
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism
;
T-Lymphocytes, Cytotoxic/physiology
9.Prognostic value of soluble MICA levels in the serum of patients with advanced hepatocellular carcinoma.
Jian-Jun LI ; Ke PAN ; Mo-Fa GU ; Min-Shan CHEN ; Jing-Jing ZHAO ; Hui WANG ; Xiao-Ting LIANG ; Jian-Cong SUN ; Jian-Chuan XIA
Chinese Journal of Cancer 2013;32(3):141-148
Serum levels of soluble MHC class I-related chain A (sMICA) are related with the prognosis of various types of cancer; however, few studies on the prognostic value of sMICA in hepatocellular carcinoma (HCC) have been reported. In this study, we retrospectively investigated the relationship between sMICA levels and clinical features of advanced HCC, and we assessed the prognostic value of sMICA in advanced HCC. Furthermore, the relationship of serum sMICA levels and natural killer group 2, member D (NKG2D) expression on natural killer (NK) cells was also evaluated. We detected sMICA levels in the serum of 60 advanced HCC patients using enzyme-linked immunosorbent assay (ELISA) and measured expression levels of NKG2D on NK cells using flow cytometry. We found that serum sMICA levels in HCC patients were in the range of 0.10-6.21 ng/mL. Chi-square analyses showed that sMICA level was significantly related with only tumor size. Survival analysis showed that a high sMICA level was significantly related with poor prognosis among HCC patients. Multivariate analyses indicated that sMICA was an independent prognostic factor. In addition, the levels of CD56+NKG2D+ NK cells were within the range of 11.2%-55.4%, and correlation analyses indicated that sMICA level was negatively correlated with the level of NKG2D+ NK cells. Our results suggest that serum sMICA levels may be an independent prognostic factor for advanced HCC.
Adult
;
Carcinoma, Hepatocellular
;
blood
;
immunology
;
pathology
;
Female
;
Histocompatibility Antigens Class I
;
blood
;
Humans
;
Killer Cells, Natural
;
immunology
;
metabolism
;
Liver Neoplasms
;
blood
;
immunology
;
pathology
;
Male
;
Middle Aged
;
Multivariate Analysis
;
NK Cell Lectin-Like Receptor Subfamily K
;
metabolism
;
Neoplasm Staging
;
Retrospective Studies
;
Survival Rate
;
Tumor Burden

Result Analysis
Print
Save
E-mail