2.Hypoxia promotes lipopolysaccharide-induced CXCL10 expression in microglia.
Zi-Bi SHI ; Yue HU ; Qian-Qian RUAN ; Ming FAN ; Ming ZHAO ; Ling-Ling ZHU
Acta Physiologica Sinica 2023;75(2):153-159
This study was aimed to investigate the effect of hypoxia on lipopolysaccharide (LPS)-induced CXC-chemokine ligand-10 (CXCL10) expression and the underlying mechanism. C57BL/6J mice were randomly divided into control, hypoxia, LPS, and hypoxia combined with LPS groups. The LPS group was intraperitoneally injected with 0.5 mg/kg LPS, and the hypoxia group was placed in a hypobaric hypoxia chamber (simulated altitude of 6 000 m). The serum and hippocampal tissue samples were collected after 6 h of the treatment. The levels of CXCL10 in the serum and hippocampal tissue of mice were detected by ELISA. The microglia cell line BV2 and primary microglia were stimulated with hypoxia (1% O2) and/or LPS (100 ng/mL) for 6 h. The mRNA expression level of CXCL10 and its content in culture supernatant were detected by real-time quantitative PCR and ELISA, respectively. The phosphorylation levels of nuclear factor κB (NF-κB) signaling pathway-related proteins, p65 and IκBα, were detected by Western blot. Moreover, after NF-κB signaling pathway being blocked with a small molecular compound, PDTC, CXCL10 mRNA expression level was detected in the BV2 cells. The results showed that in the LPS-induced mouse inflammatory model, hypoxia treatment could promote LPS-induced up-regulation of CXCL10 in both serum and hippocampus. Compared with the cells treated with LPS alone, the expression of CXCL10 mRNA and the content of CXCL10 in the culture supernatant of BV2 cells treated with hypoxia combined with LPS were significantly increased. The CXCL10 mRNA level of primary microglial cells treated with hypoxia combined with LPS was significantly up-regulated. Compared with the cells treated with hypoxia or LPS alone, the phosphorylation levels of p65 and IκBα in the BV2 cells treated with hypoxia combined with LPS were significantly increased. PDTC blocked the induction of CXCL10 gene expression by LPS in the BV2 cells. These results suggest that hypoxia promotes LPS-induced expression of CXCL10 in both animal and cell models, and NF-κB signaling pathway plays an important role in this process.
Animals
;
Mice
;
Chemokines, CXC/pharmacology*
;
Hypoxia
;
Ligands
;
Lipopolysaccharides/pharmacology*
;
Mice, Inbred C57BL
;
Microglia/metabolism*
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/pharmacology*
;
RNA, Messenger/metabolism*
3.Fine Particulate Matter Exposure Induces Toxicity by Regulating Nuclear Factor-κB/toll-like Receptor 4/myeloid Differentiation Primary Response Signaling Pathways in RAW264.7 Cells.
Mei Zhu ZHENG ; Yao LU ; Ting Ting LU ; Peng QIN ; Yu Qiu LI ; Dong Fang SHI
Biomedical and Environmental Sciences 2023;36(5):458-462
4.Terpinen-4-ol inhibits proliferation of VSMCs exposed to high glucose via regulating KLF4/NF-κB signaling pathway.
Li HE ; Lin ZHANG ; Ju ZHANG ; Hong JIANG ; Yong-Xiang HE ; Dong-Guo LENG ; Ying-Xin GONG ; Ding YANG ; Yan SONG ; Chuan-Yin XIONG ; Yan-Yan ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2530-2537
This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.
NF-kappa B/metabolism*
;
Interleukin-18/metabolism*
;
Proliferating Cell Nuclear Antigen/genetics*
;
Cyclin D1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Muscle, Smooth, Vascular
;
Cell Proliferation
;
Signal Transduction
;
Cytokines/metabolism*
;
Glucose/metabolism*
5.Mechanism of tonifying kidney and activating blood therapy for premature ovarian failure:a review.
Kun MA ; Jia-Ni LI ; Xiao-di FAN ; Han ZHANG ; Lin-Na MA
China Journal of Chinese Materia Medica 2023;48(7):1808-1814
Healthy birth and child development are the prerequisite for improving the overall quality of the population. However, premature ovarian failure(POF) threatens the reproductive health of women. The incidence of this disease has been on the rise, and it tends to occur in the young. The causes are complex, involving genetics, autoimmune, infectious and iatrogenic factors, but most of the causes remain unclear. At the moment, hormone replacement therapy and assisted reproductive technology are the main clinical approaches. According to traditional Chinese medicine(TCM), kidney deficiency and blood stasis are one of the major causes of POF, and TCM with the effects of tonifying kidney and activating blood has a definite effect. Through clinical trials, TCM prescriptions for POF have excellent therapeutic effect as a result of multi-target regulation and slight toxicity. In particular, they have no obvious side effects. A large number of studies have shown that the kidney-tonifying and blood-activating TCM can regulate the neuroendocrine function of hypothalamic-pituitary-ovarian axis, improve ovarian hemodynamics and microcirculation, reduce the apoptosis of granulosa cells, alleviate oxidative stress injury, and modulate immunologic balance. The mechanism is that it regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), vascular endothelial growth factor(VEGF), transforming growth factor(TGF)-β/Smads, nuclear factor E2-related factor 2(Nrf2)/antioxidant response element(ARE), and nuclear factor-kappa B(NF-κB) signaling pathways. This article summarized the pathological mechanisms of tonifying kidney and activating blood TCM in the prevention and treatment of POF and explored the biological basis of its multi-pathway and multi-target characteristics in the treatment of this disease. As a result, this study is expected to serve as a reference for the treatment of POF with the tonifying kidney and activating blood therapy.
Child
;
Humans
;
Female
;
Primary Ovarian Insufficiency/drug therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Vascular Endothelial Growth Factor A
;
Medicine, Chinese Traditional
;
NF-kappa B
;
Kidney
6.Role of podocyte injury signaling pathway in steroid-resistant nephrotic syndrome and research progress in traditional Chinese medicine intervention.
Wen-Xia YU ; Wen YAN ; En-Lai DAI ; Wen-Xuan TIAN ; Wen-Jing DANG
China Journal of Chinese Materia Medica 2023;48(12):3246-3254
As one of the main diseases leading to end-stage renal disease, steroid-resistant nephrotic syndrome(SRNS) can cause serious complications such as infection. Without effective control, this disease can further lead to the malignant development of the renal function, bringing serious social and economic burdens. As previously reported, the formation of SRNS is mostly related to the podocyte injury in the body, i.e., the injury of glomerular visceral epithelial cells. Phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, nuclear transcription factor-κB(NF-κB) signaling pathway, mammalian target of rapamycin(mTOR)/adenosine monophosphate(AMP)-activated protein kinase(AMPK), transforming growth factor(TGF)-β1/Smads, and other signaling pathways are classical signaling pathways related to podocyte injury. By regulating the expression of signaling pathways, podocyte injury can be intervened to improve the adhesion between podocyte foot processes and glomerular basement membrane and promote the function of podocytes, thereby alleviating the clinical symptoms of SRNS. Through the literature review, traditional Chinese medicine(TCM) has unique advantages and an important role in intervening in podocyte injury. In the intervention in podocyte injury, TCM, by virtue of multi-target and multi-pathway role, can regulate and intervene in podocyte injury in many ways, alleviate the clinical symptoms of SRNS, and interfere with the progress of SRNS, reflecting the unique advantages of TCM. On the other hand, TCM can directly or indirectly inhibit podocyte injury by regulating the above signaling pathways, which can not only promote the effect of hormones and immunosuppressants and shorten the course of treatment, but also reduce the toxic and side effects caused by various hormones and immunosuppressants to exert the advantages of small side effects and low price of TCM. This article reviewed TCM in the treatment of SRNS by interfering with podocyte injury-related signaling pathways and is expected to provide a reference for the in-depth study of TCM in the treatment of SRNS, as well as a theoretical basis and a new direction for the clinical application of TCM to shorten the course of treatment of SRNS and delay the progression to end-stage renal disease.
Humans
;
Podocytes
;
Nephrotic Syndrome/genetics*
;
Medicine, Chinese Traditional
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction
;
NF-kappa B
;
AMP-Activated Protein Kinases
;
Hormones
7.Mechanisms of traditional Chinese medicine formulas and active ingredients in regulation of macrophage subsets involved in inflammation and repair of coronary heart disease.
Guang YANG ; Chao LIU ; Lan-Chun LIU ; Jun HU ; Jie WANG
China Journal of Chinese Materia Medica 2023;48(12):3255-3262
Coronary artery disease(CAD) caused by atherosclerosis(AS) is a major contributor to the global burden of disease. The pathogenesis of CAD is complex, and the subset and function of cardiac macrophages are important factors affecting the occurrence and development of AS and the prognosis of CAD. Recent studies have shown that some traditional Chinese medicine(TCM) formulas and active ingredients can regulate macrophage subsets involved in the inflammation, injury, and repair process of CAD. This paper summarized the significant role of macrophages in AS and myocardial infarction. Based on the plasticity of macrophages, this paper elaborated that traditional Chinese medicine prevented and attenuated AS by regulating macrophage subsets, reducing the level of inflammatory factors, and promoting macrophage autophagy.Traditional Chinese medicine participated in the cardiac repair process after myocardial infarction by accelerating the recruitment of M2 macrophages, inhibiting the polarization of M1 macrophages mediated by glycolysis, inhibiting M1 macrophage-mediated cardiac nerve remodeling, and promoting M2 macrophage-mediated angiogenesis. In addition, in vitro studies on the regulation of macrophage subsets by the active ingredients of traditional Chinese medicine were also reviewed. It was pointed out that nuclear factor kappa B(NF-κB), adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphoinositide 3-kinase/protein kinase B(PI3K/Akt), chemokine(C-C motif) ligand 2/C-C chemokine receptor type 2(CCL2/CCR2) were the key targets and pathways for the regulation of macrophages by TCM.
Humans
;
Phosphatidylinositol 3-Kinases
;
Medicine, Chinese Traditional
;
Myocardial Infarction
;
Coronary Artery Disease
;
Inflammation/drug therapy*
;
AMP-Activated Protein Kinases
;
Macrophages
;
NF-kappa B
8.Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment.
Wei-Chao DING ; Juan CHEN ; Hao-Yu LIAO ; Jing FENG ; Jing WANG ; Yu-Hao ZHANG ; Xiao-Hang JI ; Qian CHEN ; Xin-Yao WU ; Zhao-Rui SUN ; Shi-Nan NIE
China Journal of Chinese Materia Medica 2023;48(12):3345-3359
The aim of this study was to investigate the effect and molecular mechanism of Xuebijing Injection in the treatment of sepsis-associated acute respiratory distress syndrome(ARDS) based on network pharmacology and in vitro experiment. The active components of Xuebijing Injection were screened and the targets were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of sepsis-associated ARDS were searched against GeneCards, DisGeNet, OMIM, and TTD. Weishengxin platform was used to map the targets of the main active components in Xuebijing Injection and the targets of sepsis-associated ARDS, and Venn diagram was established to identify the common targets. Cytoscape 3.9.1 was used to build the "drug-active components-common targets-disease" network. The common targets were imported into STRING for the building of the protein-protein interaction(PPI) network, which was then imported into Cytoscape 3.9.1 for visualization. DAVID 6.8 was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment of the common targets, and then Weishe-ngxin platform was used for visualization of the enrichment results. The top 20 KEGG signaling pathways were selected and imported into Cytoscape 3.9.1 to establish the KEGG network. Finally, molecular docking and in vitro cell experiment were performed to verify the prediction results. A total of 115 active components and 217 targets of Xuebijing Injection and 360 targets of sepsis-associated ARDS were obtained, among which 63 common targets were shared by Xuebijing Injection and the disease. The core targets included interleukin-1 beta(IL-1β), IL-6, albumin(ALB), serine/threonine-protein kinase(AKT1), and vascular endothelial growth factor A(VEGFA). A total of 453 GO terms were annotated, including 361 terms of biological processes(BP), 33 terms of cellular components(CC), and 59 terms of molecular functions(MF). The terms mainly involved cellular response to lipopolysaccharide, negative regulation of apoptotic process, lipopolysaccharide-mediated signaling pathway, positive regulation of transcription from RNA polyme-rase Ⅱ promoter, response to hypoxia, and inflammatory response. The KEGG enrichment revealed 85 pathways. After diseases and generalized pathways were eliminated, hypoxia-inducible factor-1(HIF-1), tumor necrosis factor(TNF), nuclear factor-kappa B(NF-κB), Toll-like receptor, and NOD-like receptor signaling pathways were screened out. Molecular docking showed that the main active components of Xuebijing Injection had good binding activity with the core targets. The in vitro experiment confirmed that Xuebijing Injection suppressed the HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways, inhibited cell apoptosis and reactive oxygen species generation, and down-regulated the expression of TNF-α, IL-1β, and IL-6 in cells. In conclusion, Xuebijing Injection can regulate apoptosis and response to inflammation and oxidative stress by acting on HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways to treat sepsis-associated ARDS.
Humans
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
NF-kappa B
;
Interleukin-6
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Respiratory Distress Syndrome
;
Tumor Necrosis Factor-alpha
;
Sepsis/genetics*
;
NLR Proteins
9.Effect of Isodon ternifolius-medicated serum on hepatic stellate cells based on TLR4/NF-κB/NLRP3 signaling pathway.
Gui-Dong HUANG ; Zhi-Pin ZHOU ; Zhi PANG ; Le QIN ; Rui-Sheng WU ; Yong CHEN ; Xiao-Xue YE
China Journal of Chinese Materia Medica 2023;48(14):3913-3921
The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-β1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.
NF-kappa B/metabolism*
;
Hepatic Stellate Cells
;
Transforming Growth Factor beta1/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Intercellular Adhesion Molecule-1/metabolism*
;
Isodon
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Signal Transduction
;
Colchicine/pharmacology*
;
Caspases
10.Regulatory function and mechanism of autophagy on osteoclast.
Jian-Sen MIAO ; Xiang-Yang WANG ; Hai-Ming JIN
China Journal of Orthopaedics and Traumatology 2023;36(4):357-363
Osteoclast (OC) is multinucleated, bone-resorbing cells originated from monocyte/macrophage lineage of cells, excessive production and abnormal activation of which could lead to many bone metabolic diseases, such as osteoporosis, osteoarthritis, etc. Autophagy, as a highly conserved catabolic process in eukaryotic cells, which plays an important role in maintaining cell homeostasis, stress damage repair, proliferation and differentiation. Recent studies have found that autophagy was also involved in the regulation of osteoclast generation and bone resorption. On the one hand, autophagy could be induced and activated by various factors in osteocalsts, such as nutrient deficiency, hypoxia, receptor activator of nuclear factor(NF)-κB ligand(RANKL), inflammatory factors, wear particles, microgravity environment, etc, different inducible factors, such as RANKL, inflammatory factors, wear particles, could interact with each other and work together. On the other hand, activated autophagy is involved in regulating various stages of osteoclast differentiation and maturation, autophagy could promote proliferation of osteoclasts, inhibiting apoptosis, and promoting differentiation, migration and bone resorption of osteoclast. The classical autophagy signaling pathway mediated by mammalian target of rapamycin complex 1(mTORC1) is currently a focus of research, and it could be regulated by upstream signalings such as phosphatidylinositol 3 kinase(PI-3K)/protein kinase B (PKB), AMP-activated protein kinase(AMPK). However, the paper found that mTORC1-mediated autophagy may play a bidirectional role in regulating differentiation and function of osteoclasts, and its underlying mechanism needs to be further ciarified. Integrin αvβ3 and Rab protein families are important targets for autophagy to play a role in osteoclast migration and bone resorption, respectively. In view of important role of osteoclast in the occurrence of various bone diseases, it is of great significance to elucidate the role of autophagy on osteoclast and its mechanism for the treatment of various bone diseases. The autophagy pathway could be used as a new therapeutic target for the treatment of clinical bone diseases such as osteoporosis.
Humans
;
Osteoclasts
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
NF-kappa B/metabolism*
;
Autophagy
;
Osteoporosis
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
RANK Ligand/metabolism*

Result Analysis
Print
Save
E-mail