1.Non-canonical Function of Prolyl Hydroxylase Domain 2in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1
Yanymee N. GUILLEN-QUISPE ; Su-Jung KIM ; Soma SAEIDI ; Gyo-Jin CHOI ; Chaithanya CHELAKKOT ; Tianchi ZHOU ; Sang-Beom BANG ; Tae-Won KIM ; Young Kee SHIN ; Young-Joon SURH
Journal of Cancer Prevention 2025;30(1):56-56
2.Non-canonical Function of Prolyl Hydroxylase Domain 2in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1
Yanymee N. GUILLEN-QUISPE ; Su-Jung KIM ; Soma SAEIDI ; Gyo-Jin CHOI ; Chaithanya CHELAKKOT ; Tianchi ZHOU ; Sang-Beom BANG ; Tae-Won KIM ; Young Kee SHIN ; Young-Joon SURH
Journal of Cancer Prevention 2025;30(1):56-56
3.Non-canonical Function of Prolyl Hydroxylase Domain 2in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1
Yanymee N. GUILLEN-QUISPE ; Su-Jung KIM ; Soma SAEIDI ; Gyo-Jin CHOI ; Chaithanya CHELAKKOT ; Tianchi ZHOU ; Sang-Beom BANG ; Tae-Won KIM ; Young Kee SHIN ; Young-Joon SURH
Journal of Cancer Prevention 2025;30(1):56-56
4.Non-canonical Function of Prolyl Hydroxylase Domain 2in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1
Yanymee N. GUILLEN-QUISPE ; Su-Jung KIM ; Soma SAEIDI ; Gyo-Jin CHOI ; Chaithanya CHELAKKOT ; Tianchi ZHOU ; Sang-Beom BANG ; Tae-Won KIM ; Young Kee SHIN ; Young-Joon SURH
Journal of Cancer Prevention 2024;29(4):129-139
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs. As PHD2 contains several pSer/Thr-Pro motifs, it may be a potential substrate of Pin1. In the present study, we found Pin1 and PHD2 interactions in human breast cancer MDA-MB-231 cells. The breast cancer tissue array revealed higher levels of PHD2 and Pin1 in tumors compared to adjacent normal tissues. Through liquid chromatography-tandem mass spectrometry spectrometry, three phosphorylation sites (S125, T168, and S174) on PHD2 were identified, with serine 125 as the main site for Pin1 binding. As a new Pin1 binding partner, oncogenic PHD2 could be a potential therapeutic target for breast cancer treatment.
5.Non-canonical Function of Prolyl Hydroxylase Domain 2in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1
Yanymee N. GUILLEN-QUISPE ; Su-Jung KIM ; Soma SAEIDI ; Gyo-Jin CHOI ; Chaithanya CHELAKKOT ; Tianchi ZHOU ; Sang-Beom BANG ; Tae-Won KIM ; Young Kee SHIN ; Young-Joon SURH
Journal of Cancer Prevention 2024;29(4):129-139
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs. As PHD2 contains several pSer/Thr-Pro motifs, it may be a potential substrate of Pin1. In the present study, we found Pin1 and PHD2 interactions in human breast cancer MDA-MB-231 cells. The breast cancer tissue array revealed higher levels of PHD2 and Pin1 in tumors compared to adjacent normal tissues. Through liquid chromatography-tandem mass spectrometry spectrometry, three phosphorylation sites (S125, T168, and S174) on PHD2 were identified, with serine 125 as the main site for Pin1 binding. As a new Pin1 binding partner, oncogenic PHD2 could be a potential therapeutic target for breast cancer treatment.
6.Non-canonical Function of Prolyl Hydroxylase Domain 2in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1
Yanymee N. GUILLEN-QUISPE ; Su-Jung KIM ; Soma SAEIDI ; Gyo-Jin CHOI ; Chaithanya CHELAKKOT ; Tianchi ZHOU ; Sang-Beom BANG ; Tae-Won KIM ; Young Kee SHIN ; Young-Joon SURH
Journal of Cancer Prevention 2024;29(4):129-139
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs. As PHD2 contains several pSer/Thr-Pro motifs, it may be a potential substrate of Pin1. In the present study, we found Pin1 and PHD2 interactions in human breast cancer MDA-MB-231 cells. The breast cancer tissue array revealed higher levels of PHD2 and Pin1 in tumors compared to adjacent normal tissues. Through liquid chromatography-tandem mass spectrometry spectrometry, three phosphorylation sites (S125, T168, and S174) on PHD2 were identified, with serine 125 as the main site for Pin1 binding. As a new Pin1 binding partner, oncogenic PHD2 could be a potential therapeutic target for breast cancer treatment.
7.Anesthetic Management and Outcomes of Endovascular Treatment of Basilar Artery Occlusion: Results From the ATTENTION Registry
Chunrong TAO ; Guangxiong YUAN ; Pengfei XU ; Hao WANG ; Peiyang ZHOU ; Tingyu YI ; Kai LI ; Tao CUI ; Jun GAO ; Rui LI ; Jun SUN ; Chao ZHANG ; Li WANG ; Tianlong LIU ; Jianlong SONG ; Yamei YIN ; Thanh N. NGUYEN ; Qing LI ; Wei HU
Journal of Stroke 2023;25(3):399-408
Background:
and Purpose To examine the clinical and safety outcomes after endovascular treatment (EVT) for acute basilar artery occlusion (BAO) with different anesthetic modalities.
Methods:
This was a retrospective analysis using data from the Endovascular Treatment for Acute Basilar Artery Occlusion (ATTENTION) registry. Patients were divided into two groups defined by anesthetic modality performed during EVT: general anesthesia (GA) or non-general anesthesia (non-GA). The association between anesthetic management and clinical outcomes was evaluated in a propensity score matched (PSM) cohort and an inverse probability of treatment weighting (IPTW) cohort to adjust for imbalances between the two groups.
Results:
Our analytic sample included 1,672 patients from 48 centers. The anesthetic modality was GA in 769 (46.0%) and non-GA in 903 (54.0%) patients. In our primary analysis with the PSM-based cohort, non-GA was comparable to GA concerning the primary outcome (adjusted common odds ratio [acOR], 1.01; 95% confidence interval [CI], 0.82 to 1.25; P=0.91). Mortality at 90 days was 38.4% in the GA group and 35.8% in the non-GA group (adjusted risk ratio, 0.95; 95% CI, 0.83 to 1.08; P=0.44). In our secondary analysis with the IPTW-based cohort, the anesthetic modality was significantly associated with the distribution of modified Rankin Scale at 90 days (acOR: 1.45 [95% CI: 1.20 to 1.75]).
Conclusion
In this nationally-representative observational study, acute ischemic stroke patients due to BAO undergoing EVT without GA had similar clinical and safety outcomes compared with patients treated with GA. These findings provide the basis for large-scale randomized controlled trials to test whether anesthetic management provides meaningful clinical effects for patients undergoing EVT.
8.Pathological features and diagnostic significance of lung biopsy in occupational lung diseases.
T WANG ; Y FU ; M MA ; J ZHOU ; Q SUN ; A N FENG ; F Q MENG
Chinese Journal of Pathology 2023;52(11):1114-1119
Objective: To investigate the clinicopathological characteristics of occupational lung diseases, to reduce the missed diagnoses and misdiagnoses of the diseases and to help standardize the diagnosis and treatment of these patients. Methods: A total of 4 813 lung biopsy specimens (including 1 935 consultation cases) collected at the Department of Pathology, Nanjing Drum Tower Hospital, Nanjing, China from January 1st, 2017 to December 31th, 2019 were retrospectively analyzed. Among them, 126 cases of occupational lung diseases were confirmed with clinical-radiological-pathological diagnosis. Special staining, PCR and scanning electron microscopy were also used to rule out the major differential diagnoses. Results: The 126 patients with occupational lung diseases included 102 males and 24 females. All of them had a history of exposure to occupational risk factor(s). Morphologically, 68.3% (86/126) of the cases mainly showed pulmonary fibrotic nodules, dust plaque formation or carbon end deposition in pulmonary parenchyma. 16.7% (21/126) of the cases mainly showed welding smoke particle deposition in the alveolar cavity and lung interstitium while 15.1% (19/126) of the cases showed granulomas with fibrous tissue hyperplasia, alveolar protein deposition or giant cell interstitial pneumonia. The qualitative and semi-quantitative analyses of residual dust components in the lung under scanning electron microscope were helpful for the diagnosis of welder's pneumoconiosis and hard metal lung disease. Conclusions: The morphological characteristics of lung biopsy tissue are important reference basis for the clinicopathological diagnosis and differential diagnosis of occupational lung diseases. Recognizing the characteristic morphology and proper use of auxiliary examination are the key to an accurate diagnosis of occupational lung diseases on biopsy specimens.
Male
;
Female
;
Humans
;
Retrospective Studies
;
Pneumoconiosis/pathology*
;
Lung/pathology*
;
Dust
;
Pneumonia, Viral/pathology*
;
Biopsy
9.Spatial distribution characteristics of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020.
Y ZHOU ; L TANG ; Y TONG ; J HUANG ; J WANG ; Y ZHANG ; H JIANG ; N XU ; Y GONG ; J YIN ; Q JIANG ; J ZHOU ; Y ZHOU
Chinese Journal of Schistosomiasis Control 2023;35(5):444-450
OBJECTIVE:
To investigate the spatial distribution characteristics of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody, and to examine the correlation between the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020, so as to provide insights into advanced schistosomiais control in the province.
METHODS:
The epidemiological data of schistosomiasis in Hunan Province in 2020 were collected, including number of permanent residents in survey villages, number of advanced schistosomiasis patients, number of residents receiving serological tests and number of residents seropositive for anti-Schistosoma antibody, and the prevalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody were descriptively analyzed. Village-based spatial distribution characteristics of prevalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody were identified in Hunan Province in 2020, and the correlation between the revalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody was examined using Spearman correlation analysis.
RESULTS:
The prevalence of advanced schistosomiasis was 0 to 2.72% and the seroprevalence of anti-Schistosoma antibody was 0 to 20.25% in 1 153 schistosomiasis-endemic villages in Hunan Province in 2020. Spatial clusters were identified in both the prevalence of advanced schistosomiasis (global Moran's I = 0.416, P < 0.01) and the seroprevalence of anti-Schistosoma antibody (global Moran's I = 0.711, P < 0.01) in Hunan Province. Local spatial autocorrelation analysis identified 98 schistosomiasis-endemic villages with high-high clusters of the prevalence of advanced schistosomiasis, 134 endemic villages with high-high clusters of the seroprevalence of anti-Schistosoma antibody and 36 endemic villages with high-high clusters of both the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province. In addition, spearman correlation analysis showed a positive correlation between the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody (rs = 0.235, P < 0.05).
CONCLUSIONS
There were spatial clusters of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020, which were predominantly located in areas neighboring the Dongting Lake. These clusters should be given a high priority in the schistosomiasis control programs.
Animals
;
Humans
;
Prevalence
;
Seroepidemiologic Studies
;
Schistosomiasis/epidemiology*
;
Schistosoma
;
Spatial Analysis
;
Antibodies, Helminth
;
China/epidemiology*

Result Analysis
Print
Save
E-mail