1.Suppression of METTL3 expression attenuated matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the extracellular matrix in pelvic organ prolapse.
Xiuqi WANG ; Tao GUO ; Xiaogang LI ; Zhao TIAN ; Linru FU ; Zhijing SUN
Chinese Medical Journal 2025;138(7):859-867
BACKGROUND:
Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.
METHODS:
Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts. METTL3 small interfering RNA and an overexpression vector were transfected into vaginal fibroblasts to evaluate the effects of METTL3 silencing and overexpression on matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the ECM. Both procedures were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, Western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), and immunofluorescence (IF).
RESULTS:
Vaginal fibroblasts from POP patients exhibited increased proliferation ability, increased expression of α-smooth muscle actin (α-SMA), decreased expression of collagen I/III, and significantly decreased expression of tissue inhibitors of matrix metalloproteinases (TIMPs) in the stiff matrix ( P <0.05). Compared with those from non-POP patients, vaginal wall tissues from POP patients demonstrated a significant increase in METTL3 content ( P <0.05). However, silencing METTL3 expression in vaginal fibroblasts with high ECM stiffness resulted in decreased proliferation ability, decreased α-SMA expression, an increased ratio of collagen I/III, and increased TIMP1 and TIMP2 expression. Conversely, METTL3 overexpression significantly promoted the process of increased proliferation ability, increased α-SMA expression, decreased ratio of collagen I/III and decreased TIMP1 and TIMP2 expression in the soft matrix ( P <0.05).
CONCLUSIONS
Elevated ECM stiffness can promote excessive proliferation, differentiation, and abnormal ECM modulation, and the expression of METTL3 plays an important role in alleviating or aggravating matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal ECM modulation.
Humans
;
Female
;
Extracellular Matrix/metabolism*
;
Cell Differentiation/genetics*
;
Methyltransferases/metabolism*
;
Pelvic Organ Prolapse/pathology*
;
Fibroblasts/metabolism*
;
Myofibroblasts/metabolism*
;
Vagina/metabolism*
;
Cell Proliferation/physiology*
;
Cells, Cultured
;
Middle Aged
2.Haematococcus pluvialis alleviates bleomycin-induced pulmonary fibrosis in mice by inhibiting transformation of lung fibroblasts into myofibroblast.
Xiao ZHANG ; Jingzhou MAN ; Yong ZHANG ; YunJian ZHENG ; Heping WANG ; Yijun YUAN ; Xi XIE
Journal of Southern Medical University 2025;45(8):1672-1681
OBJECTIVES:
To investigate the effect of Haematococcus pluvialis (HP) on bleomycin (BLM)-induced pulmonary fibrosis in mice and on TGF-β1-induced human fetal lung fibroblasts (HFL1).
METHODS:
Thirty male C57BL/6 mice were randomly divided into control group, BLM-induced pulmonary fibrosis model group, low- and high-dose HP treatment groups (3 and 21 mg/kg, respectively), and 300 mg/kg pirfenidone (positive control) group. The effects of drug treatment for 21 days were assessed by examining respiratory function, lung histopathology, and expression of fibrosis markers in the lung tissues of the mouse models. In TGF-β1-induced HFL1 cell cultures, the effects of treatment with 120, 180 and 240 μg/mL HP or 1.85 μg/mL pirfenidone for 48 h on expression levels of fibrosis markers were evaluated. Transcriptome analysis was carried out using the control cells and cells treated with TGF-β1 and 240 μg/mL HP.
RESULTS:
HP obviously alleviated BLM-induced lung function damage and fibrotic changes in mice, evidenced by improved respiratory function, lung tissue morphology and structure, inflammatory infiltration, and collagen deposition and reduced expressions of fibrotic proteins. HP at the high dose produced similar effect to PFD. In TGF-β1-induced HFL1 cells, treatment with 240 μg/mL HP significantly reduced the mRNA and protein expression levels of α-SMA and FN. Transcriptome analysis revealed that multiple key genes and pathways mediated the protective effect of HP against pulmonary fibrosis.
CONCLUSIONS
HP alleviates pulmonary fibrosis in both the mouse model and cell model, possibly as the result of the synergistic effects of its multiple active components.
Animals
;
Pulmonary Fibrosis/chemically induced*
;
Bleomycin/adverse effects*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Fibroblasts/drug effects*
;
Lung/pathology*
;
Transforming Growth Factor beta1/pharmacology*
;
Myofibroblasts/drug effects*
;
Humans
;
Pyridones
3.Expression and significance of ferroptosis marker 4-HNE in in vitro model of systemic sclerosis.
Kelin ZHAO ; Xue XIA ; Naixu SHI ; Han ZHOU ; Jingwen GAI ; Ping LI
Journal of Peking University(Health Sciences) 2024;56(6):950-955
OBJECTIVE:
To investigate the expression and physiological significance of the ferroptosis marker 4-hydroxynonenal (4-HNE) in myofibroblasts induced by transforming growth factor-β1 (TGF-β1), providing theoretical evidence for its potential role in the diagnosis and treatment of fibrosis in systemic sclerosis (SSc).
METHODS:
Mouse embryonic fibroblasts (NIH3t3) were cultured and divided into two groups after 12 h of starvation: the control group (cultured in 1% serum-containing medium) and the TGF-β1 group (cultured in 10 μg/L TGF-β1 with 1% serum-containing medium). Cell morphology changes in both groups were observed under a microscope. To confirm successful establishment of the SSc cell model, fibrosis markers were analyzed using reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot. Next, flow cytometry was employed to assess the intracellular levels of reactive oxygen species (ROS) in both groups. Finally, Western blot and immunofluorescence staining were used to measure the expression of 4-HNE in the TGF-β1-treated cells.
RESULTS:
Microscopic observations revealed that TGF-β1 treatment caused the NIH3t3 cells to transition from a typical spindle shape to a flat, polygonal shape with multiple protrusions, indicating fibroblast activation. The RT-qPCR and Western blot analyses showed that the expression of the fibrosis marker Vimentin was significantly upregulated in the TGF-β1 group compared with the control group (P < 0.01), confirming that TGF-β1 effectively promoted fibrosis-related gene and protein expression. Flow cytometry results indicated that TGF-β1 significantly elevated intracellular ROS levels, suggesting the induction of oxidative stress. Furthermore, both Western blot and immuno-fluorescence staining demonstrated a significant increase in 4-HNE expression in the TGF-β1-treated cells (immunofluorescence intensity P < 0.05).
CONCLUSION
TGF-β1 promotes fibroblast activation and fibrosis while inducing ROS production, leading to a marked increase in 4-HNE expression. Given the role of 4-HNE as a marker of lipid peroxidation and its elevated levels in the SSc cell model, this study suggests that 4-HNE could serve as a potential biomarker for fibrosis in SSc. The findings highlight the importance of investigating the mechanisms of 4-HNE in fibrosis and suggest that targeting this pathway could offer new therapeutic opportunities for treating SSc.
Animals
;
Mice
;
Scleroderma, Systemic/pathology*
;
Aldehydes/pharmacology*
;
Transforming Growth Factor beta1/metabolism*
;
NIH 3T3 Cells
;
Ferroptosis
;
Reactive Oxygen Species/metabolism*
;
Fibrosis
;
Fibroblasts/metabolism*
;
Biomarkers/metabolism*
;
Myofibroblasts/metabolism*
5.Relationship between the Number of Neutrophils and Myofibroblasts during Diabetic Wound Healing and Wound Age.
Jun-jie HUANG ; Yi YAO ; Chong-Jian XIA ; Ya-di ZHAO ; Si YU ; Yuan GAO ; Guang Hua YE ; Lin Sheng YU ; Yan Yan FAN
Journal of Forensic Medicine 2019;35(2):149-153
Objective To investigate the sequential changes of the number of neutrophils and myofibroblasts during diabetic wound healing, and discuss its application value in wound age estimation. Methods Diabetic DB mice and mice of the same age in the normal control group were selected, a wound healing model was established, wound samples were taken at different time points, while the number of neutrophils and myofibroblasts during diabetic wound healing were determined by immunohistochemical staining technique. Results The number of infiltrated neutrophils in the wounds of control and diabetic groups reached the peak respectively at 12 h and 5 d after injury. Compared with the control group, the number of neutrophils in the diabetic group decreased significantly from 6 h to 1 d after injury, but increased markedly from 5 d to 14 d. From 5 d to 10 d after injury, the average number of neutrophils at high magnification in wounds of the diabetic group was over 30, while that of neutrophils in wounds of the control group was less than 20. Myofibroblasts appeared in wounds from 3 d to 14 d after injury in the control group and from 5 d to 14 d after injury in the diabetic group. The difference in the number of myofibroblasts in wounds between control group and diabetic group from 3 to 7 d after injury had statistical significance. Conclusion In comparison with normal wound healing, the number of neutrophils and myofibroblasts during diabetic wound healing shows different sequential changes. The results of this study can provide reference for wound age estimation of patients with severe diabetes.
Animals
;
Diabetes Mellitus, Experimental/pathology*
;
Mice
;
Myofibroblasts
;
Neutrophils
;
Wound Healing/physiology*
6.Protective Effect of Angiotensin (1-7) on Silicotic Fibrosis in Rats.
Bo Nan ZHANG ; Hong XU ; Xue Min GAO ; Gui Zhen ZHANG ; Xin ZHANG ; Fang YANG
Biomedical and Environmental Sciences 2019;32(6):419-426
OBJECTIVE:
Silicosis, caused by inhalation of silica dust, is the most serious occupational disease in China and the aim of present study was to explore the protective effect of Ang (1-7) on silicotic fibrosis and myofibroblast differentiation induced by Ang II.
METHODS:
HOPE-MED 8050 exposure control apparatus was used to establish the rat silicosis model. Pathological changes and collagen deposition of the lung tissue were examined by H.E. and VG staining, respectively. The localizations of ACE2 and α-smooth muscle actin (α-SMA) in the lung were detected by immunohistochemistry. Expression levels of collagen type I, α-SMA, ACE2, and Mas in the lung tissue and fibroblasts were examined by western blot. Levels of ACE2, Ang (1-7), and Ang II in serum were determined by ELISA. Co-localization of ACE2 and α-SMA in fibroblasts was detected by immunofluorescence.
RESULTS:
Ang (1-7) induced pathological changes and enhanced collagen deposition in vivo. Ang (1-7) decreased the expressions of collagen type I and α-SMA and increased the expressions of ACE2 and Mas in the silicotic rat lung tissue and fibroblasts stimulated by Ang II. Ang (1-7) increased the levels of ACE2 and Ang (1-7) and decreased the level of Ang II in silicotic rat serum. A779 enhanced the protective effect of Ang (1-7) in fibroblasts stimulated by Ang II.
CONCLUSION
Ang (1-7) exerted protective effect on silicotic fibrosis and myofibroblast differentiation induced by Ang II by regulating ACE2-Ang (1-7)-Mas axis.
Actins
;
metabolism
;
Angiotensin I
;
blood
;
pharmacology
;
therapeutic use
;
Angiotensin II
;
blood
;
Animals
;
Animals, Newborn
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
metabolism
;
Disease Models, Animal
;
Lung
;
metabolism
;
pathology
;
Myofibroblasts
;
drug effects
;
Peptide Fragments
;
blood
;
pharmacology
;
therapeutic use
;
Peptidyl-Dipeptidase A
;
metabolism
;
Rats, Wistar
;
Silicosis
;
metabolism
;
pathology
;
prevention & control
7.Clinicopathological Characteristics of Urinary Bladder Tumors in Korean Patients 20 Years or Younger.
Seong Cheol KIM ; Sejun PARK ; Sang Hoon SONG ; Kun Suk KIM ; Sungchan PARK
Journal of Korean Medical Science 2018;33(40):e242-
BACKGROUND: To investigate the clinicopathological characteristics of urinary bladder tumors, a rare malignancy, in patients 20 years or younger. METHODS: Using a retrospective chart review among patients who received bladder surgery at 2 institutions between July 1996 and January 2013, we analyzed the clinicopathological characteristics of urinary bladder tumors in 21 pediatric patients (male:female = 4.25:1.00; mean age, 12.1 years). RESULTS: Pathology revealed 9 urothelial tumors, 6 rhabdomyosarcomas, 1 low-grade leiomyosarcoma, 1 large cell neuroendocrine carcinoma, 1 inflammatory myofibroblastic tumor, and 3 cases of chronic inflammation without tumors (including 1 xanthogranulomatous inflammation). Urothelial tumors (mean patient age, 16.0 years) were benign or low-grade; and only transurethral resection of the bladder tumor was necessary for treatment. Patients with rhabdomyosarcomas (mean age, 5 years) underwent radiotherapy (if unresectable) or transurethral resection of the bladder tumor (if resectable), after chemotherapy. Of these patients, 2 underwent radical cystectomy, with the remaining patients not receiving a cystectomy. With the exception of one patient, all patients are currently alive and recurrence-free. CONCLUSION: Urothelial tumors were the most commonly found pediatric bladder tumor, with embryonal rhabdomyosarcoma being the second most common. Urothelial tumors are common in relatively older age. Since urothelial tumors in children typically have a good prognosis and rarely recur, transurethral resection of the bladder tumor is the treatment of choice. Rhabdomyosarcomas are common in younger patients. Since rhabdomyosarcoma is generally chemosensitive, chemotherapy and radiotherapy are the treatment of choice for bladder preservation in these patients.
Carcinoma, Neuroendocrine
;
Child
;
Cystectomy
;
Drug Therapy
;
Humans
;
Inflammation
;
Leiomyosarcoma
;
Myofibroblasts
;
Pathology
;
Prognosis
;
Radiotherapy
;
Retrospective Studies
;
Rhabdomyosarcoma
;
Rhabdomyosarcoma, Embryonal
;
Urinary Bladder Neoplasms
;
Urinary Bladder*
8.The Role of Fibrocyte in the Pathogenesis of Silicosis.
Juan LI ; Wu YAO ; Jian Yong HOU ; Lin ZHANG ; Lei BAO ; Hui Ting CHEN ; Di WANG ; Zhong Zheng YUE ; Yi Ping LI ; Miao ZHANG ; Xing Hao YU ; Jian Hui ZHANG ; Ya Qian QU ; Chang Fu HAO
Biomedical and Environmental Sciences 2018;31(4):311-316
Exposure to free silica induces silicosis and myofibroblasts are regarded as primary effector cells. Fibrocytes can differentiate into myofibroblast. Therefore, the present study was designed to investigate whether fibrocytes participate in silicosis. The rat model of silicosis was established. Hematoxylin-eosin stainings and Masson stainings were used to evaluate the histopathology and collagen deposition. Flow cytometry and immunofluorescence were performed to detect the number of fibrocytes and their contribution to myofibroblasts. Results showed that fibrocytes participate in silicosis. Trend analysis of different sources of myofibroblasts during silicosis indicated that fibrocytes and lung type II epithelial cell-derived myofibroblasts play an important role in the early stage of silicosis, while resident lung fibroblast-derived myofibroblasts play a predominant role during the fibrosis formative period.
Animals
;
Disease Models, Animal
;
Lung
;
cytology
;
Myofibroblasts
;
drug effects
;
pathology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Silicon Dioxide
;
toxicity
;
Silicosis
;
etiology
;
pathology
9.Pathomechanisms of pericyte-myofibroblast transition in kidney and interventional effects of Chinese herbal medicine.
Ying-Lu LIU ; Ge SHI ; Dong-Wei CAO ; Yi-Gang WAN ; Wei WU ; Yue TU ; Bu-Hui LIU ; Wen-Bei HAN ; Jian YAO
China Journal of Chinese Materia Medica 2018;43(21):4192-4197
In the kidney, pericyte is the major source of myofibroblast (MyoF) in renal interstitium. It is reported that pericyte-myofibroblast transition(PMT)is one of the important pathomechanisms of renal interstitial fibrosis(RIF). Among them, the main reasons for promoting RIF formation include pericyte recruitment, activation and isolation, as well as the lack of pericyte-derived erythropoietin. During the PMT startup process, pericyte activation and its separation from microvessels are controlled by multiple signal transduction pathways, such as transforming growth factor-β(TGF-β)pathway, vascular endothelial growth factor receptor (VEGFR) pathway and platelet derived growth factor receptor (PDGFR) pathway;Blocking of these signaling pathways can not only inhibit PMT, but also suppress renal capillaries reduction and further alleviate RIF. In clinic, many traditional Chinese medicine compound prescriptions, single traditional Chinese herbal medicine (CHM) and their extracts have the clear effects in alleviating RIF, and some of their intervention actions may be related to pericyte and its PMT. Therefore, the studies on PMT and its drug intervention will become the main development direction in the research field of anti-organ fibrosis by CHM.
Drugs, Chinese Herbal
;
pharmacology
;
Fibrosis
;
Humans
;
Kidney
;
cytology
;
drug effects
;
pathology
;
Myofibroblasts
;
cytology
;
Pericytes
;
cytology
;
Receptors, Platelet-Derived Growth Factor
;
metabolism
;
Signal Transduction
;
Vascular Endothelial Growth Factor A
;
metabolism
10.Inhibition effect of N-acetyl-seryl-aspartyl-lysyl-proline on myofibroblast differentiation by regulating acetylated tubulin α in silicotic rat model.
Shifeng LI ; Xuemin GAO ; Dingjie XU ; Xiaojun WANG ; Yan LIU ; Lijuan ZHANG ; Haijing DENG ; Zhongqiu WEI ; Jingrui TIAN ; Hong XU ; Fang YANG ; E-mail: FANGYANG1955@163.COM.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(11):816-821
OBJECTIVETo explore the inhibition effect and mechanism of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP)on myofibroblast differentiation via regulating acetylated tubulin α (Ac-Tub α)in vivo and in vitro.
METHODSSilicotic model were made by SiO2 douched and divided into 6 groups as follows: control (4w, 8w)group, silicotic model (4w, 8w)group and post-or pre-treatment by Ac-SDKP group. Pulmonary fibroblasts were divided into 5 groups: (1) control; (2) Ang II; (3) Ang II+Ac-SDKP; (4) Ang II+Valsartan; (5) Ang II+TCS histone deacetylase (HDAC)6 20b. The localization of Ac-Tub α and α-smooth muscle actin (SMA) were observed by immunohistochemical (IHC) and immunofluorescence staining. The protein levels of Ac-Tub α, α-SMA, collagen type I (col I) and HDAC6 were measured by western blot.
RESULTSIn silicotic nodules and interstitial fibrosis area, positive expression of α-SMA, a classical marker of myofibroblast, was ob-served by IHC, accompanied with absence expression of Ac-Tub α. Furthermore, Ac-SDKP post-treatment could attenuate the levels of col I, α-SMA and HDAC6 to 48.39%, 52.63% and 70.18% compared with the silicotic 8w group respectively. And in Ac-SDKP pre-treatment group, compared with the silicotic 8w group, these protein levels were decreased to 32.26%, 64.91% and 54.39% respectively (P<0.05). The up-regulation of Ac-Tub α was found in Ac-SDKP post-and pre-treatment and increased to 3.00 and 2.90 folds compared with the silicotic 8w group. Compared with control group, the levels of α-SMA, HDAC6 and col I in Ang II group were up-regulated to 1.66, 3.56 and 4.00 folds accompanied with down-regulation of Ac-Tub by 44.44% (P<0.05). Pre-treatment with Valsartan, TCS HDAC6 20b or Ac-SDKP could inhibited all this changes induced by Ang II in vitro.
CONCLUSIONAc-SDKP can inhibit the myofibroblast differentiation and collagen deposition via sup-press HDAC6 and up-regulate the expression of Ac-Tub α in vivo and in vitro.
Actins ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Collagen Type I ; metabolism ; Disease Models, Animal ; Fibroblasts ; cytology ; Lung ; pathology ; Myofibroblasts ; cytology ; drug effects ; Oligopeptides ; pharmacology ; Rats ; Silicon Dioxide ; toxicity ; Silicosis ; drug therapy ; Tubulin ; metabolism

Result Analysis
Print
Save
E-mail