1.Mechanism of the pretreatment with electroacupuncture of "biaoben acupoint combination" for regulating cardiomyocyte mitochondrial fission in the rats of myocardial ischemia-reperfusion injury.
Yanlin ZHANG ; Song WU ; Qianru GUO ; Yuntao YU ; Sunyi WANG ; Yuqi WEI ; Xiaoman WAN ; Zhen LU ; Xiaoru HE
Chinese Acupuncture & Moxibustion 2025;45(3):335-344
OBJECTIVE:
To observe the effect of electroacupuncture (EA) pretreatment of "biaoben acupoint combination" on cardiomyocyte mitochondrial fission in the rats with myocardial ischemia-reperfusion injury (MIRI) and explore its mechanism.
METHODS:
Fifty male SD rats were randomly divided into a sham-operation group, a model group, an EA pretreatment group, an EA pretreatment + Compound C group and an EA pretreatment+ML385 group, 10 rats in each group. In the EA pretreatment, the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, EA was delivered at bilateral "Neiguan" (PC6), "Zusanli" (ST36) and "Guanyuan" (CV4) for 20 min, with continuous wave and 2 Hz of frequency, 1 mA of current, once daily for consecutive 7 days. On day 8, in the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, 30 min before model preparation, the intraperitoneal injection with Compound C (0.3 mg/kg) and ML385 (30 mg/kg) was administered respectively. Except in the sham-operation group, the ligation of the left anterior descending coronary artery was performed to prepare MIRI rat model in the rest groups. In the sham-operation group, the thread was not ligated. After modeling, the content of reactive oxygen species (ROS) in the ischemic area was measured by flow cytometry, superoxide dismutase (SOD) was detected using xanthine oxidase method, and malondialdelyde (MDA) was detected using thiobarbituric acid (TBA) chromatometry. The morphology of myocardial tissue in the ischemic area was observed with HE staining, and the mitochondria ultrastructure of cardiomyocytes observed under transmission electron microscopy. Using immunofluorescence analysis, the positive expression of mitochondrial fission factor (MFF), mitochondrial fission 1 protein antibody (Fis1) and dynamin-related protein 1 (Drp1) was detected; and with immunohistochemical method used, the protein expression of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor E2-associated factor2 (Nrf2) and Drp1 in the ischemic area was detected.
RESULTS:
Compared with the sham-operation group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 increased in the model group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 decreased (P<0.01), and the protein expression of Drp1 elevated (P<0.01). Compared with the model group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01), and the protein expression of Drp1 declined (P<0.01); and in the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the positive expression of MFF, Fis1 and Drp1, and the protein expression of Drp1 were all reduced (P<0.01). When compared with the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01, P<0.05), and the protein expression of Drp1 decreased (P<0.05). In comparison with the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the cardiac muscle fiber rupture, cell swelling and mitochondrial disorders were obviously alleviated in the EA pretreatment group. The morphological changes were similar among the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group.
CONCLUSION
Electroacupuncture pretreatment of "biaoben acupoint combination" attenuates myocardial injury in MIRI rats, probably through promoting the phosphorylation of AMPK and Nrf2, inhibiting the excessive mitochondrial fission induced by Drp1, and reducing mitochondrial dysfunction caused by mitochondrial fragmentation and vacuolation.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Myocardial Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
;
Rats
;
Acupuncture Points
;
Mitochondrial Dynamics
;
Humans
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Superoxide Dismutase/metabolism*
2.Salvianolate injection ameliorates cardiomyopathy by regulating autophagic flux through miR-30a/becn1 axis in zebrafish.
Jianxuan LI ; Yang ZHANG ; Zhi ZUO ; Zhenzhong ZHANG ; Ying WANG ; Shufu CHANG ; Jia HUANG ; Yuxiang DAI ; Junbo GE
Chinese Medical Journal 2025;138(20):2604-2614
BACKGROUND:
Salvianolate is a compound mainly composed of salvia magnesium acetate, which is extracted from the Chinese herb Salvia miltiorrhiza . In recent years, salvianolate injection has been widely used in the treatment of cardiovascular diseases, but the mechanism of how it can alleviate cardiotoxicity remains unclear.
METHODS:
The cardiac injury model was constructed by treatment with doxorubicin (Dox) or azithromycin (Azi) in zebrafish larvae. Heart phenotype, heart rate, and cardiomyocyte apoptosis were observed in the study. RNA-sequencing (RNA-seq) analysis was used to explore the underlying mechanism of salvianolate treatment. Moreover, cardiomyocyte autophagy was assessed by in situ imaging. In addition, the miR-30a/becn1 axis regulation by salvianolate was further investigated.
RESULTS:
Salvianolate treatment reduced the proportion of pericardial edema, recovered heart rate, and inhibited cardiomyocyte apoptosis in Dox/Azi-administered zebrafish larvae. Mechanistically, salvianolate regulated the lysosomal pathway and promoted autophagic flux in zebrafish cardiomyocytes. The expression level of becn1 was increased in Dox-induced myocardial tissue injury after salvianolate administration; overexpression of becn1 in cardiomyocytes alleviated the Dox/Azi-induced cardiac injury and promoted autophagic flux in cardiomyocytes, while becn1 knockdown blocked the effects of salvianolate. In addition, miR-30a, negatively regulated by salvianolate, partially inhibited the cardiac amelioration of salvianolate by targeting becn1 directly.
CONCLUSION
This study has proved that salvianolate reduces cardiomyopathy by regulating autophagic flux through the miR-30a/becn1 axis in zebrafish and is a potential drug for adjunctive Dox/Azi therapy.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Autophagy/drug effects*
;
Myocytes, Cardiac/metabolism*
;
Cardiomyopathies/metabolism*
;
Beclin-1/genetics*
;
Apoptosis/drug effects*
;
Plant Extracts/therapeutic use*
;
Doxorubicin
3.Cardiomyocyte pyroptosis inhibited by dental pulp-derived mesenchymal stem cells via the miR-19a-3p/IRF-8/MAPK pathway in ischemia-reperfusion.
Yi LI ; Xiang WANG ; Sixian WENG ; Chenxi XIA ; Xuyang MENG ; Chenguang YANG ; Ying GUO ; Zuowei PEI ; Haiyang GAO ; Fang WANG
Chinese Medical Journal 2025;138(18):2336-2346
BACKGROUND:
The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.
METHODS:
Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.
RESULTS:
DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.
CONCLUSION
DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.
Animals
;
MicroRNAs/metabolism*
;
Pyroptosis/genetics*
;
Mesenchymal Stem Cells/metabolism*
;
Myocytes, Cardiac/cytology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Dental Pulp/cytology*
;
Myocardial Reperfusion Injury/therapy*
;
MAP Kinase Signaling System/physiology*
4.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female
5.Disulfiram alleviates cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Wei-Dong LI ; Xuan-Yang SHEN ; Xiao-Lu JIANG ; Hong-Fu WEN ; Yuan SHEN ; Mei-Qi ZHANG ; Wen-Tao TAN
Acta Physiologica Sinica 2025;77(2):222-230
The study aims to examine the effects and potential mechanisms of disulfiram (DSF) on cardiac hypertrophic injury, focusing on the role of transforming growth factor-β-activated kinase 1 (TAK1)-mediated pan-apoptosis (PANoptosis). H9C2 cardiomyocytes were treated with angiotensin II (Ang II, 1 µmol/L) to establish an in vitro model of myocardial hypertrophy. DSF (40 µmol/L) was used to treat cardiomyocyte hypertrophic injury models, either along or in combination with the TAK1 inhibitor, 5z-7-oxozeaenol (5z-7, 0.1 µmol/L). We assessed cell damage using propidium iodide (PI) staining, measured cell viability with CCK8 assay, quantified inflammatory factor levels in cell culture media via ELISA, detected TAK1 and RIPK1 binding rates using immunoprecipitation, and analyzed the protein expression levels of key proteins in the TAK1-mediated PANoptosis pathway using Western blot. In addition, the surface area of cardiomyocytes was measured with Phalloidin staining. The results showed that Ang II significantly reduced the cellular viability of H9C2 cardiomyocytes and the binding rate of TAK1 and RIPK1, significantly increased the surface area of H9C2 cardiomyocytes, PI staining positive rate, levels of inflammatory factors [interleukin-1β (IL-1β), IL-18, and tumor necrosis factor α (TNF-α)] in cell culture media and p-TAK1/TAK1 ratio, and significantly up-regulated key proteins in the PANoptosis pathway [pyroptosis-related proteins NLRP3, Caspase-1 (p20), and GSDMD-N (p30), apoptosis-related proteins Caspase-3 (p17), Caspase-7 (p20), and Caspase-8 (p18), as well as necroptosis-related proteins p-MLKL, RIPK1, and RIPK3]. DSF significantly reversed the above changes induced by Ang II. Both 5z-7 and exogenous IL-1β weakened these cardioprotective effects of DSF. These results suggest that DSF may alleviate cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Animals
;
MAP Kinase Kinase Kinases/physiology*
;
Rats
;
Myocytes, Cardiac/pathology*
;
Disulfiram/pharmacology*
;
Cardiomegaly
;
Apoptosis/drug effects*
;
Cell Line
;
Angiotensin II
;
Necroptosis/drug effects*
;
Interleukin-1beta/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Lactones
;
Resorcinols
;
Zearalenone/administration & dosage*
6.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
7.Dahuang Zhechong Pills delay heart aging by reducing cardiomyocyte apoptosis via PI3K/AKT/HIF-1α signaling pathway.
Wen-Jie LIU ; Yue TU ; Wei-Ming HE ; Si-Yi LIU ; Liu-Yun-Xin PAN ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN
China Journal of Chinese Materia Medica 2025;50(5):1276-1285
This study aimed to investigate the effect of Dahuang Zhechong Pills(DHZCP) in delaying heart aging(HA) and explore the potential mechanism. Network pharmacology and molecular docking were employed to explore the targets and potential mechanisms of DHZCP in delaying HA. Furthermore, in vitro experiments were conducted with the DHZCP-containing serum to verify key targets and pathways in D-galactose(D-gal)-induced aging of cardiomyocytes. Active components of DHZCP were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCSMP), and relevant targets were predicted. HA-related targets were screened from the GeneCards, Online Mendelian Inheritance in Man(OMIM), and DisGeNET. The common targets shared by the active components of DHZCP and HA were used to construct a protein-protein interaction network in STRING 12.0, and core targets were screened based on degree in Cytoscape 3.9.1. Metaspace was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of the core targets to predict the mechanisms. Molecular docking was performed in AutoDock Vina. The results indicated that a total of 774 targets of the active components of DHZCP and 4 520 targets related to HA were screened out, including 510 common targets. Core targets included B-cell lymphoma 2(BCL-2), serine/threonine kinase 1(AKT1), and hypoxia-inducible factor 1 subunit A(HIF1A). The GO and KEGG enrichment analyses suggested that DHZCP mainly exerted its effects via the phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway, HIF-1α signaling pathway, longevity signaling pathway, and apoptosis signaling pathway. Among the pathways predicted by GO and KEGG enrichment analyses, the PI3K/AKT/HIF-1α signaling pathway was selected for verification. The cell-counting kit 8(CCK-8) assay showed that D-gal significantly inhibited the proliferation of H9c2 cells, while DHZCP-containing serum increased the viability of H9c2 cells. SA-β-gal staining revealed a significant increase in the number of blue-green positive cells in the D-gal group, which was reduced by DHZCP-containing serum. TUNEL staining showed that DHZCP-containing serum decreased the number of apoptotic cells. After treatment with DHZCP-containing serum, the protein levels of Klotho, BCL-2, p-PI3K/PI3K, p-AKT1/AKT1, and HIF-1α were up-regulated, while those of P21, P16, BCL-2 associated X protein(Bax), and cleaved caspase-3 were down-regulated. The results indicated that DHZCP delayed HA via multiple components, targets, and pathways. Specifically, DHZCP may delay HA by reducing apoptosis via activating the PI3K/AKT/HIF-1α signaling pathway.
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Apoptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Animals
;
Rats
;
Humans
;
Molecular Docking Simulation
;
Aging/metabolism*
;
Protein Interaction Maps/drug effects*
;
Heart/drug effects*
;
Network Pharmacology
8.Effects of total flavonoids of Dracocephalum moldavica on apoptosis of H9c2 cells induced by OGD/R injury and endoplasmic reticulum stress.
Tian WANG ; Di-Wei LIU ; Tong-Ye WANG ; Xing-Yu ZHANG ; Jian-Guo XING ; Rui-Fang ZHENG
China Journal of Chinese Materia Medica 2025;50(5):1321-1330
This study investigated the effects of total flavonoids of Dracocephalum moldavica(TFDM) on apoptosis in rat H9c2 cells induced by endoplasmic reticulum stress(ERS) established by oxygen-glucose deprivation and reoxygenation(OGD/R) injury and tunicamycin(TM), and explored the potential mechanisms. After successful modeling, the following groups were set in this experiment: control group, model(OGD/R or TM) group, and TFDM low-, medium-, and high-dose groups(12.5, 25, and 50 μg·mL~(-1)). The OGD/R injury model was constructed in vitro. Cell proliferation was assessed using the cell counting kit-8(CCK-8) method. The levels of lactate dehydrogenase(LDH) and creatine kinase MB isoenzyme(CKMB) in the cell supernatant were detected. Western blot was used to assess the expression of ERS-related proteins, including glucose regulatory protein 78(GRP78), C/EBP homologous protein(CHOP), activating transcription factor 6(ATF6), and apoptotic proteins B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax). Apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) method. In the TM-induced ERS model, Western blot was used to measure the expression of ERS pathway-related proteins GRP78, CHOP, inositol-requiring enzyme 1(IRE1), X-box binding protein 1(XBP1), protein kinase RNA-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), ATF6, p-ATF6, and apoptotic proteins Bcl-2, Bax, cysteinyl aspartate specific proteinase-12(caspase-12), and cleaved caspase-12. Gene expression of GRP78, CHOP, PERK, and ATF6 was detected by real-time fluorescence quantitative PCR(RT-qPCR). Apoptosis was again detected using the TUNEL method. The results showed that in the OGD/R model, compared with the control group, the levels of LDH and CKMB in the cell supernatant were significantly increased in the OGD/R group. Compared with the OGD/R group, the levels of LDH and CKMB in the TFDM group were significantly reduced. Western blot results revealed that compared with the control group, the expression of ERS-related proteins and Bax in the OGD/R group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the OGD/R group, the expression of ERS-related proteins and Bax in the TFDM groups was significantly reduced, and the expression of Bcl-2 was significantly increased. TUNEL assay showed that apoptosis was significantly decreased after TFDM treatment. In the TM-induced ERS experiment, compared with the control group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TM group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the TM group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TFDM group was significantly reduced, and the expression of Bcl-2 was significantly increased. These results suggest that ERS exists in the OGD/R-injured H9c2 cell model, and TFDM can effectively inhibit ERS-induced apoptosis. The mechanism may be related to the downregulation of ERS pathway-related proteins and apoptotic proteins.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats
;
Flavonoids/pharmacology*
;
Glucose/metabolism*
;
Cell Line
;
Lamiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Oxygen/metabolism*
;
Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
9.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
10.Mechanism of puerarin improving myocardial contractile function in myocardial hypertrophy by inhibiting ferroptosis via Nrf2/ARE/HO-1 signaling pathway.
Yan-Dong LIU ; Wei QIAO ; Zhao-Hui PEI ; Guo-Liang SONG ; Wei JIN ; Wei-Bing ZHONG ; Qin-Qin DENG
China Journal of Chinese Materia Medica 2025;50(16):4679-4689
This study aims to explore the specific mechanism by which puerarin inhibits ferroptosis and improves the myocardial contractile function in myocardial hypertrophy through the nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE)/heme oxygenase-1(HO-1) signaling pathway. The hypertrophic cardiomyocyte model was established using phenylephrine, and H9c2 cells were divided into control group, model group, puerarin group, and puerarin+ML385 group. Cell viability and surface area were detected by cell counting kit-8(CCK-8) and immunofluorescence experiments. The mitochondrial membrane potential and Ca~(2+) concentration were measured. The ferroptosis-related indicators were detected by biochemical and fluorescence staining methods. The expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway was detected by Western blot. A myocardial hypertrophy model was established, and 40 rats were randomly divided into sham group, model group, puerarin group, and puerarin+Nrf2 inhibitor(ML385) group, with 10 rats in each group. Echocardiogram, hemodynamic parameters, and myocardial hypertrophy parameters were measured. Histopathological changes of myocardial tissues were observed by hematoxylin and eosin(HE) staining and Masson staining. Biochemical methods, enzyme-linked immunosorbent assay(ELISA), and fluorescence staining were used to detect inflammatory factors and ferroptosis-related indicators. Immunohistochemistry was used to detect the expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway. Cell experiments showed that puerarin intervention significantly enhanced the viability of hypertrophic cardiomyocytes, reduced their surface area, and restored mitochondrial membrane potential and Ca~(2+) homeostasis. Mechanism studies revealed that puerarin promoted Nrf2 nuclear translocation, upregulated the expression of HO-1, solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4), and decreased malondialdehyde(MDA), reactive oxygen species(ROS), and iron levels. These protective effects were reversed by ML385. In animal experiments, puerarin improved cardiac function in rats with myocardial hypertrophy, alleviated myocardial hypertrophy and fibrosis, inhibited inflammatory responses and ferroptosis, and promoted nuclear Nrf2 translocation and HO-1 expression. However, combined intervention with ML385 led to deterioration of hemodynamics and a rebound in ferroptosis marker levels. In conclusion, puerarin may inhibit cardiomyocyte ferroptosis through the Nrf2/ARE/HO-1 signaling pathway, thereby improving myocardial contractile function in myocardial hypertrophy.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Rats
;
Ferroptosis/drug effects*
;
Signal Transduction/drug effects*
;
Isoflavones/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Cardiomegaly/genetics*
;
Myocytes, Cardiac/metabolism*
;
Antioxidant Response Elements/drug effects*
;
Myocardial Contraction/drug effects*
;
Heme Oxygenase-1/genetics*
;
Cell Line

Result Analysis
Print
Save
E-mail