3.Downregulation of cardiac PIASy inhibits Cx43 SUMOylation and ameliorates ventricular arrhythmias in a rat model of myocardial ischemia/reperfusion injury.
Tingting WANG ; Jinmin LIU ; Chenchen HU ; Xin WEI ; Linlin HAN ; Afang ZHU ; Rong WANG ; Zhijun CHEN ; Zhengyuan XIA ; Shanglong YAO ; Weike MAO
Chinese Medical Journal 2023;136(11):1349-1357
BACKGROUND:
Dysfunction of the gap junction channel protein connexin 43 (Cx43) contributes to myocardial ischemia/reperfusion (I/R)-induced ventricular arrhythmias. Cx43 can be regulated by small ubiquitin-like modifier (SUMO) modification. Protein inhibitor of activated STAT Y (PIASy) is an E3 SUMO ligase for its target proteins. However, whether Cx43 is a target protein of PIASy and whether Cx43 SUMOylation plays a role in I/R-induced arrhythmias are largely unknown.
METHODS:
Male Sprague-Dawley rats were infected with PIASy short hairpin ribonucleic acid (shRNA) using recombinant adeno-associated virus subtype 9 (rAAV9). Two weeks later, the rats were subjected to 45 min of left coronary artery occlusion followed by 2 h reperfusion. Electrocardiogram was recorded to assess arrhythmias. Rat ventricular tissues were collected for molecular biological measurements.
RESULTS:
Following 45 min of ischemia, QRS duration and QTc intervals statistically significantly increased, but these values decreased after transfecting PIASy shRNA. PIASy downregulation ameliorated ventricular arrhythmias induced by myocardial I/R, as evidenced by the decreased incidence of ventricular tachycardia and ventricular fibrillation, and reduced arrythmia score. In addition, myocardial I/R statistically significantly induced PIASy expression and Cx43 SUMOylation, accompanied by reduced Cx43 phosphorylation and plakophilin 2 (PKP2) expression. Moreover, PIASy downregulation remarkably reduced Cx43 SUMOylation, accompanied by increased Cx43 phosphorylation and PKP2 expression after I/R.
CONCLUSION
PIASy downregulation inhibited Cx43 SUMOylation and increased PKP2 expression, thereby improving ventricular arrhythmias in ischemic/reperfused rats heart.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
Connexin 43/genetics*
;
Sumoylation
;
Down-Regulation
;
Rats, Sprague-Dawley
;
Arrhythmias, Cardiac/drug therapy*
;
Myocardial Ischemia/metabolism*
;
RNA, Small Interfering/metabolism*
4.Network Pharmacology and Experimental Validation to Explore Mechanism of Tetrahydropalmatine on Acute Myocardial Ischemia.
Po-Li LIN ; Jun-Ling CAO ; Ping REN ; Jia-Li CHEN ; Bo-Ya CAO ; Ping HE ; Chang-Hui ZHENG ; Qi-Wen LI ; Wei WANG ; Jian ZHANG
Chinese journal of integrative medicine 2023;29(12):1087-1098
OBJECTIVE:
To explore the potential molecular mechanism of tetrahydropalmatine (THP) on acute myocardial ischemia (AMI).
METHODS:
First, the target genes of THP and AMI were collected from SymMap Database, Traditional Chinese Medicine Database and Analysis Platform, and Swiss Target Prediction, respectively. Then, the overlapping target genes between THP and AMI were evaluated for Grene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction network analysis. The binding affinity between the protein and THP was assessed by molecular docking. Finally, the protective effects of THP on AMI model and oxygen and glucose deprivation (OGD) model of H9C2 cardiomyocyte were explored and the expression levels of target genes were detected by RT-qPCR in vivo and in vitro.
RESULTS:
MMP9, PPARG, PTGS2, SLC6A4, ESR1, JAK2, GSK3B, NOS2 and AR were recognized as hub genes. The KEGG enrichment analysis results revealed that the potential target genes of THP were involved in the regulation of PPAR and hormone pathways. THP improved the cardiac function, as well as alleviated myocardial cell damage. Furthermore, THP significantly decreased the RNA expression levels of MMP9, PTGS2, SLC6A4, GSK3B and ESR1 (P<0.05, P<0.01) after AMI. In vitro, THP significantly increased H9C2 cardiomyocyte viability (P<0.05, P<0.01) and inhibited the RNA expression levels of PPARG, ESR1 and AR (P<0.05, P<0.01) in OGD model.
CONCLUSIONS
THP could improve cardiac function and alleviate myocardial injury in AMI. The underlying mechanism may be inhibition of inflammation, the improvement of energy metabolism and the regulation of hormones.
Humans
;
Matrix Metalloproteinase 9
;
Network Pharmacology
;
Cyclooxygenase 2
;
Molecular Docking Simulation
;
PPAR gamma
;
Myocardial Ischemia/genetics*
;
Glucose
;
RNA
;
Drugs, Chinese Herbal/therapeutic use*
;
Serotonin Plasma Membrane Transport Proteins
5.Effect of electroacupuncture on myocardial inflammatory injury and apoptosis in mice with acute myocardial ischemia based on VEGF-C/VEGFR-3 pathway.
Hai-Yan ZUO ; Sheng-Bing WU ; Xin WU ; Shuai CUI ; Lei WANG ; Xiao-Xiao WANG ; Hao-Sheng WU ; Si-Jia TONG ; Zhen-He PEI ; Mei-Qi ZHOU
Chinese Acupuncture & Moxibustion 2022;42(11):1269-1277
OBJECTIVE:
To observe the effect of electroacupuncture (EA) on vascular endothelial growth factor-C (VEGF-C), vascular endothelial growth factor receptor-3 (VEGFR-3), proinflammatory factors and apoptosis in myocardial tissue in mice with acute myocardial ischemia (AMI), and to explore the mechanism of EA for AMI.
METHODS:
Fifty male C57BL/6 mice were randomly divided into a sham operation group, a model group, an EA group, an inhibitor group and an inhibitor+EA group, 10 mice in each group. Except for the sham operation group, the mice in the remaining groups were intervented with ligation at the left anterior descending (LAD) coronary artery to establish AMI model. The mice in the sham operation group were intervented without ligation after thoracotomy. The mice in the EA group were intervented with EA at "Shenmen" (HT 7) and "Tongli" (HT 5), disperse-dense wave, 2 Hz/15 Hz in frequency, 1 mA in current intensity, 30 min each time, once a day, for 3 d. The mice in the inhibitor group were treated with intraperitoneal injection of SAR 131675 (12.5 mg•kg-1•d-1, once a day for 3 d). The mice in the inhibitor+EA group were injected intraperitoneally with SAR 131675 30 min before EA. The ECG before modeling, 30 min after modeling and 3 d after intervention was detected, and the ST segment displacement was recorded; after the intervention, the ELISA method was applied to measure the contents of serum creatine kinase isoenzyme (CK-MB), aspartate aminotransferase (AST) as well as tumor necrosis factor-α (TNF-α) and interleukin-23 (IL-23) in myocardial tissue; the HE staining method was used to observe the morphological changes of myocardial tissue; the immunofluorescence double labeling method was applied to measure the number of co-expression positive cells of VEGF-C/VEGFR-3 in myocardial tissue; the TUNEL method was used to detect the level of cardiomyocyte apoptosis; the Western blot method was applied to measure the protein expressions of VEGF-C, VEGFR-3, b-lymphoma-2 (Bcl-2), activated caspase-3 (Cleaved Caspase-3) and activated poly adenosine diphosphate ribose polymerase-1 (Cleaved PARP-1).
RESULTS:
Compared with the sham operation group, in the model group the ST segment displacement was increased (P<0.01); the contents of CK-MB, AST, TNF-α and IL-23 were increased (P<0.01); the arrangement of myocardial fibers was disordered, and interstitial inflammatory cell infiltration was obvious; the number of co-expression positive cells of VEGF-C/VEGFR-3 was decreased (P<0.01); the number of cardiomyocyte apoptosis was increased (P<0.01); the expressions of VEGF-C, VEGFR-3 and Bcl-2 were decreased (P<0.01); the expressions of Cleaved Caspase-3 and Cleaved PARP-1 were increased (P<0.01). Compared with the model group, in the EA group the ST segment displacement was decreased (P<0.01); the contents of CK-MB, AST, TNF-α, IL-23 were decreased (P<0.01); the severity of myocardial pathological injury was reduced; the number of co-expression positive cells of VEGF-C/VEGFR-3 was increased (P<0.01); the number of cardiomyocyte apoptosis was reduced (P<0.01); the expressions of VEGF-C, VEGFR-3 and Bcl-2 were increased (P<0.01); the expressions of Cleaved Caspase-3 and Cleaved PARP-1 were reduced (P<0.01). There was no significant difference in all the indexes between the model group and the inhibitor group (P>0.05). Compared with the model group, the protein expression of VEGF-C was increased in the inhibitor+EA group (P<0.01). Compared with the inhibitor group, in the EA group the ST segment displacement was decreased (P<0.01); the contents of CK-MB, AST, TNF-α, IL-23 were decreased (P<0.01); the severity of myocardial pathological injury was reduced; the number of co-expression positive cells of VEGF-C/VEGFR-3 was increased (P<0.05); the number of cardiomyocyte apoptosis was reduced (P<0.01); the expressions of VEGF-C, VEGFR-3 and Bcl-2 were increased (P<0.01); the expressions of Cleaved Caspase-3 and Cleaved PARP-1 were reduced (P<0.01). Compared with the inhibitor+EA group, all the indexes in the EA group were improved except the protein expression of VEGF-C (P<0.01).
CONCLUSION
EA could relieve the inflammatory reaction and apoptosis in AMI mice, and its mechanism may be related to activating VEGF-C/VEGFR-3 pathway and promoting lymphangion genesis.
Mice
;
Male
;
Animals
;
Electroacupuncture
;
Vascular Endothelial Growth Factor Receptor-3
;
Caspase 3
;
Vascular Endothelial Growth Factor C
;
Tumor Necrosis Factor-alpha/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Poly(ADP-ribose) Polymerase Inhibitors
;
Mice, Inbred C57BL
;
Myocardial Ischemia/metabolism*
;
Apoptosis
;
Interleukin-23
;
Proto-Oncogene Proteins c-bcl-2
6.Association between genetic predisposition to childhood obesity and the risk of adult ischemic heart disease in China.
Wen Xiu WANG ; Ning Hao HUANG ; Jun LYU ; Can Qing YU ; Yu GUO ; Pei PEI ; Huai Dong DU ; Jun Shi CHEN ; Zheng Ming CHEN ; Tao HUANG ; Li Ming LI
Chinese Journal of Epidemiology 2022;43(4):445-451
Objective: To examine the associations of childhood obesity, assessed by genetic variations of childhood body mass index (BMI), with the risk of adult ischemic heart disease (IHD) and major coronary event (MCE). Methods: More than 69 000 participants from the China Kadoorie Biobank were genotyped. After excluding those with coronary heart disease, stroke, or cancer at baseline, a total of 64 454 participants were included in this study. Based on genome-wide significant single nucleotide polymorphisms (SNPs), childhood BMI genetic risk score were constructed for every participant and divided into quintiles, with the lowest quintile as the low genetic risk group and the highest quintile as the high genetic risk group. Cox proportional hazards regression models were used to estimate the association between genetic predisposition to childhood obesity and the risk of ischemic heart disease. Results: During a median of 10.7 years of follow-up, 7 073 incident cases of IHD and 1 845 cases of MCE were documented. After adjusting for sex, age, region, and the first ten genetic principal components, the HRs (95%CIs) for IHD and MCE in the high genetic risk group were 1.10 (1.02-1.18) and 1.10 (0.95-1.27), compared with the low genetic risk group. IHD risk increased by 4% (2%-6%) for each one standard deviation increase in genetic risk score (trend P=0.001). After further adjustment for baseline BMI, the differences between genetic risk groups were not statistically significant, but there was still a linear trend between genetic risk score and IHD risk (trend P=0.019). Conclusions: IHD risk increased with genetic predisposition to childhood obesity, suggesting that childhood obesity is an important risk factor for the development of IHD in China. As an easily identifiable feature, changes of childhood BMI should be monitored regularly to realize early intervention of IHD in adults.
Adult
;
Body Mass Index
;
Child
;
China/epidemiology*
;
Genetic Predisposition to Disease
;
Humans
;
Myocardial Ischemia/genetics*
;
Pediatric Obesity/genetics*
;
Prospective Studies
;
Risk Factors
7.Mechanism of paeonol combined with paeoniflorin against myocardial ischemia injury:based on proteomics.
Chun-Yan HU ; Xin GUO ; Xue-Ling LIU ; Gang LIU ; Xiao XU ; Qing MAO ; Qi GUO
China Journal of Chinese Materia Medica 2021;46(15):3943-3948
The study aims to investigate the effect of the compatibility of paeonol and paeoniflorin(hereinafter referred to as the compatibility) on the expression of myocardial proteins in rats with myocardial ischemia injury and explore the underlying mechanism of the compatibility against myocardial ischemia injury. First, the acute myocardial infarction rat model was established by ligation of the anterior descending branch of the left coronary artery. The model rats were given(ig) paeonol and paeoniflorin. Then protein samples were collected from rat cardiac tissue and quantified by tandem mass tags(TMT) to explore the differential proteins after drug intervention. The experimental results showed that differential proteins mainly involved phagocytosis engulfment, extracellular space, and antigen binding, as well as Kyoto encyclopedia of genes and genomes(KEGG) pathways of complement and coagulation cascades, syste-mic lupus erythematosus, and ribosome. In this study, the target proteins and related signaling pathways identified by differential proteomics may be the biological basis of the compatibility against myocardial ischemia injury in rats.
Acetophenones
;
Animals
;
Glucosides
;
Monoterpenes
;
Myocardial Ischemia/genetics*
;
Myocardial Reperfusion Injury
;
Proteomics
;
Rats
;
Rats, Sprague-Dawley
8.Molecular mechanism of Qishen Yiqi Dripping Pills in treating myocardial ischemia:a study based on HIF-1 signaling pathway.
Yi-Ting GONG ; Yan-Ping LI ; Ya-Ru CHENG ; Xiu-Jia SHI ; Li YANG ; Dong-Ping YANG ; Wen-Juan XU ; Ling DONG
China Journal of Chinese Materia Medica 2021;46(15):3949-3959
Qishen Yiqi Dripping Pills(QSYQ) are used clinically to treat various myocardial ischemic diseases, such as angina pectoris, myocardial infarction, and heart failure; however, the molecular mechanism of QSYQ remains unclear, and the scientific connotation of traditional Chinese medicine(TCM) compatibility has not been systematically explained. The present study attempted to screen the critical pathway of QSYQ in the treatment of myocardial ischemia by network pharmacology and verify the therapeutic efficacy with the oxygen-glucose deprivation(OGD) model, in order to reveal the molecular mechanism of QSYQ based on the critical pathway. The key targets of QSYQ were determined by active ingredient identification and target prediction, and underwent pathway enrichment analysis and functional annotation with David database to reveal the biological role and the critical pathway of QSYQ. Cell counting Kit-8(CCK-8), lactate dehydrogenase(LDH), and Western blot tests were launched on high-content active ingredients with OGD cell model to reveal the molecular mechanism of QSYQ based on the critical pathway. The results of network pharmacology indicated that QSYQ, containing 18 active ingredients and 82 key targets, could protect cardiomyocytes by regulating biological functions, such as nitric oxide biosynthesis, apoptosis, inflammation, and angiogenesis, through TNF signaling pathway, HIF-1 signaling pathway, PI3 K-Akt signaling pathway, etc. HIF-1 signaling pathway was the critical pathway. As revealed by CCK-8 and LDH tests, astragaloside Ⅳ, salvianic acid A, and ginsenoside Rg_1 in QSYQ could enhance cell viability and reduce LDH in the cell supernatant in a concentration-dependent manner(P<0.05). As demonstrated by the Western blot test, astragaloside Ⅳ significantly down-regulated the protein expression of serine/threonine-protein kinase(Akt1) and hypoxia-inducible factor 1α(HIF-1α) in the HIF-1 signaling pathway, and up-regulated the protein expression of vascular endothelial growth factor A(VEGFA). Salvianic acid A significantly down-regulated the protein expression of upstream phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha(PIK3 CA) and downstream HIF-1α of Akt1. Ginsenoside Rg_1 significantly down-regulated the expression of HIF-1α protein and up-regulated the expression of VEGFA. The therapeutic efficacy of QSYQ on myocardial ischemia was achieved by multiple targets and multiple pathways, with the HIF-1 signaling pathway serving as the critical one. The active ingredients of QSYQ could protect cardiomyocytes synergistically by regulating the targets in the HIF-1 signaling pathway to inhibit its expression.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Myocardial Ischemia/genetics*
;
Signal Transduction
;
Vascular Endothelial Growth Factor A
9.Use of cationic microbubbles targeted to P-selectin to improve ultrasound-mediated gene transfection of hVEGF165 to the ischemic myocardium.
Wei-Hui SHENTU ; Cao-Xin YAN ; Chun-Mei LIU ; Rui-Xiang QI ; Yao WANG ; Zhao-Xu HUANG ; Li-Ming ZHOU ; Xiang-Dong YOU
Journal of Zhejiang University. Science. B 2018;19(9):699-707
Gene therapies have been applied to the treatment of cardiovascular disease, but their use is limited by the need to deliver them to the right target. We have employed targeted contrast ultrasound-mediated gene transfection (TCUMGT) via ultrasound-targeted microbubble destruction (UTMD) to transfer therapeutic genes to specific anatomic and pathological targets. Phospholipid microbubbles (MBs) with pcDNA3.1-human vascular endothelial growth factor 165 (pcDNA3.1-hVEGF165) plasmids targeted to P-selectin (MB+P+VEGFp) were created by conjugating monoclonal antibodies against P-selectin to the lipid shell. These microbubbles were divided into four groups: microbubble only (MB), microbubble+P-selectin (MB+P), microbubble+pcDNA3.1-hVEGF165 plasmid (MB+VEGFp), and microbubble+ P-selectin+pcDNA3.1-hVEGF165 plasmid (MB+P+VEGFp). The reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) results showed that the VEGF gene was successfully transfected by TCUMGT and the efficiency is increased with P-selectin targeting moiety. UTMD-mediated delivery of VEGF increased myocardial vascular density and improved cardiac function, and MB+P+VEGFp delivery showed greater improvement than MB+VEGFp. This study drew support from TCUGMT technology and took advantage of targeted ultrasound contrast agent to identify ischemic myocardium, release pcDNA3.1-hVEGF165 recombinant plasmid, and improve the myocardial microenvironment, so promoting the restoration of myocardial function.
Animals
;
Genetic Therapy/methods*
;
Male
;
Microbubbles
;
Myocardial Ischemia/therapy*
;
P-Selectin/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Transfection/methods*
;
Ultrasonics
;
Vascular Endothelial Growth Factor A/genetics*
10.Family history and risk of coronary heart disease.
J H SI ; R R MENG ; C Q YU ; Y GUO ; Z BIAN ; Y L TAN ; P PEI ; J S CHEN ; Z M CHEN ; J LYU ; L M LI
Chinese Journal of Epidemiology 2018;39(2):173-178
Objective: To evaluate the association of family history with risk of major coronary events (MCE) and ischemic heart disease (IHD). Methods: After excluding participants with heart disease, stroke or cancer at baseline survey, a total of 485 784 participants from the China Kadoorie Biobank, who had no missing data on critical variables, were included in the analysis. Cox regression analysis was used to estimate the hazard ratios (HR) and 95% CI. Subgroup analyses were performed according to the baseline characteristics. Results: During a median of 7.2 years of follow-up, we documented 3 934 incident cases of MCE and 24 537 cases of IHD. In multivariable-adjusted models, family history was significantly associated with risk of MCE and IHD. The adjusted HRs (95%CI) were 1.41 (1.19-1.65) and 1.25 (1.18-1.33), respectively. History of disease among siblings was more strongly associated with early-onset MCE than parental history (HR=2.97, 95%CI: 1.80-4.88). Moreover, the association of family history with MCE and IHD was stronger in persons who were overweight or obesive, and the association between family history and MEC was stronger in smokers. Conclusion: This large-scale, prospective study indicated that family history was an independent risk factor for MCE and IHD in China. The intervention targeting major known lifestyle risk factors and the management of chronic diseases should be strengthened for Chinese population, especially for the individuals with family history were at high risk.
Asian People/statistics & numerical data*
;
China/epidemiology*
;
Coronary Disease/genetics*
;
Humans
;
Incidence
;
Myocardial Ischemia/genetics*
;
Overweight/ethnology*
;
Proportional Hazards Models
;
Prospective Studies
;
Risk Assessment
;
Risk Factors
;
Smoking/ethnology*

Result Analysis
Print
Save
E-mail