1.Traditional Chinese medicine understanding and treatment of acute myocardial infarction complicated with acute upper gastrointestinal bleeding.
Xing-Jiang XIONG ; Fu-Kun LUO ; Xiao-Ya WANG ; Yu LAN ; Peng-Qian WANG
China Journal of Chinese Materia Medica 2025;50(7):1969-1973
Acute myocardial infarction and acute upper gastrointestinal bleeding are both critical internal medicine conditions. The incidence of acute upper gastrointestinal bleeding in patients with acute myocardial infarction ranges from 5.31% to 8.90%, with a mortality rate as high as 20.50% to 35.70%. The pathogenesis may be related to the use of antiplatelet and anticoagulant drugs, as well as stress-induced injury. In treatment, the contradiction between antiplatelet/anticoagulation therapy and bleeding has made this disease a significant challenge in modern medicine. Therefore, re-exploring the etiology, pathogenesis, treatment principles, and methods of traditional Chinese medicine(TCM) for acute myocardial infarction and acute upper gastrointestinal bleeding is of great clinical importance. The research team has been working year-round in the coronary care unit(CCU), managing a large number of such severe patients. By revisiting classic texts and delving into the foundational theories of TCM and historical medical literature, it has been found that this disease falls under the category of "distant blood" in the Synopsis of the Golden Chamber. In terms of etiology, it is primarily associated with weakness of healthy Qi and damage caused by drug toxicity. In terms of pathogenesis, in the acute stage, it mainly manifests as insufficient spleen Yang, deficiency of spleen Qi, and failure of the spleen to control blood. In the remission stage, it is characterized by deficiency of both heart Qi and spleen blood. For treatment, during the acute stage, Huangtu Decoction is used to warm Yang and restrain blood, while in the remission stage, Guipi Decoction is administered to tonify Qi and nourish blood. During the treatment process, for patients with acute myocardial infarction complicated with acute upper gastrointestinal bleeding, it is crucial to flexibly apply the treatment principles of "Nil per os" in western medicine and "where there is stomach Qi, there is life; where there is no stomach Qi, there is death" in TCM. Early intervention with Huangtu Decoction can also prevent bleeding, with large doses being key to achieving hemostasis. It is important to address the pathogenesis of heat syndrome in addition to the core pathogenesis of Yang deficiency bleeding and to emphasize the follow-up treatment with Guipi Decoction for a successful outcome.
Humans
;
Gastrointestinal Hemorrhage/etiology*
;
Myocardial Infarction/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Acute Disease
2.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
3.Astragaloside IV regulates Snail1 lactylation and acetylation to mediate macrophage polarization and improve myocardial infarction.
Shaopeng CHEN ; Rudian KANG ; Xinbao HONG ; Yilong LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):289-299
Objective To investigate the impact of Astragaloside-IV (AS-IV) on the progression of myocardial infarction (MI) through macrophage-dependent mechanisms by regulating Snail1 lactylation and acetylation, as well as the transforming growth factor β (TGF-β) pathway. Methods Oxygen glucose deprivation (OGD) was used to establish an in vitro myocardial ischemia model in rat cardiomyocytes (H9c2), which were then treated with AS-IV. Cell viability was assessed using CCK-8, apoptosis was evaluated by flow cytometry, and LDH levels were measured to assess cellular damage. RAW246.7 cells were treated with LPS, and lactate levels in the supernatant were measured using ELISA, while expression of macrophage phenotype markers was evaluated using Western blot. RAW246.7 cell-conditioned medium (CM) was co-cultured with H9c2 cells to assess the protective effects of AS-IV on macrophage CM-mediated H9c2 damage. RAW246.7 cells were induced to differentiate into M1-like macrophages using LPS (100 ng/mL) + IFN-γ (20 ng/mL), and Snail1 was overexpressed in M1 macrophages. Transfected M1 macrophage CM was co-cultured with H9c2 cells to validate the mechanisms of AS-IV in MI. An MI rat model was established by ligation of the left anterior descending coronary artery (LAD), and was treated with AS-IV. Cardiac function, myocardial cell apoptosis, and cardiac tissue pathology were studied using echocardiography, TUNEL, and HE staining, respectively. Results Compared to the OGD group, AS-IV treatment promoted cell viability, reduced apoptosis and decreased LDH release. LPS upregulated lactate levels in the supernatant of RAW246.7 cell cultures and induced polarization of RAW246.7 cells to the M1 phenotype. AS-IV attenuated the damaging effects of RAW246.7 cell CM on H9c2 cells . Overexpression of Snail1 in M1 macrophages weakened the protective effects of AS-IV on H9c2 cells . In vivo study, results showed that, compared to the MI group, AS-IV treatment reduced lactate levels in the hearts of MI rats, improved cardiac function and myocardial injury and attenuated myocardial cell apoptosis. Conclusion AS-IV inhibits TGF-β pathway activation through the suppression of Snail1 lactylation and acetylation in a macrophage-dependent manner, thereby mitigating myocardial cell damage following MI.
Animals
;
Myocardial Infarction/drug therapy*
;
Rats
;
Snail Family Transcription Factors/metabolism*
;
Macrophages/cytology*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/pharmacology*
;
Saponins/pharmacology*
;
Acetylation/drug effects*
;
Apoptosis/drug effects*
;
Mice
;
Cell Line
;
RAW 264.7 Cells
;
Transforming Growth Factor beta/metabolism*
4.Advances in hydrogel drug delivery systems for myocardial infarction treatment.
Jia YANG ; Zheng ZHOU ; Xiahong XIE ; Mingzhou YE
Journal of Zhejiang University. Medical sciences 2025;54(4):455-468
Myocardial infarction is a cardiovascular disease with high morbidity and mortality rates. Hydrogel biomaterials mimicking the extracellular matrix have recently been shown to demonstrate excellent biocompatibility, low immunogenicity, favorable biodegradability, and multifunctionality, showcasing significant potential for treatment of myocardial infarction. Hydrogels can provide mechanical support to the damaged myo-cardium, alleviating pathological remodeling. Moreover, their porous structure makes them ideal carriers for localized and sustained drug delivery. Hydrogels derived from various matrices-including polysaccharides, polypeptides, proteins, decellularized extracellular matrix, and synthetic polymers-exhibit distinct properties in terms of biocompatibility, mechanical performance, and drug delivery capacity. These hydrogels support tissue regeneration and enable targeted release of diverse therapeutics, meeting the various therapeutic demands for myocardial repair. In the infarcted myocardial microenvironment, endogenous signals such as low pH, specific enzyme expression, and elevated levels of reactive oxygen species can trigger responsive drug release from hydrogels, while external physical stimuli-such as ultrasound, light, and magnetic fields-can also be employed to precisely control the release process, thereby enhancing therapeutic efficacy and reducing systemic side effects. This review summarizes recent advances in hydrogel-based drug delivery systems for treatment of myocardial infarction, focusing particularly on the characteristics and advantages of different hydrogel materials for myocardial repair. Furthermore, the responsive drug release behavior of hydrogels is analyzed in the context of the cardiac injury microenvironment, providing a reference for future research.
Hydrogels/chemistry*
;
Myocardial Infarction/drug therapy*
;
Humans
;
Drug Delivery Systems/methods*
;
Biocompatible Materials
;
Drug Carriers
5.Annual review of clinical research on extracorporeal life support in 2024.
Hongling ZHANG ; Yuan YU ; Zhongtao DU ; Xiaojing ZOU ; Xiaotong HOU ; You SHANG
Chinese Critical Care Medicine 2025;37(4):317-323
The important studies in the field of extracorporeal life support (ECLS) in 2024 focused on the application of cardiac support technologies in acute myocardial infarction (AMI) with cardiogenic shock (CS): veno-arterial extracorporeal membrane oxygenation (V-A ECMO) has not shown advantages in either short- or long-term outcomes and may increase the risk of bleeding and vascular complications; in contrast, micro-axial flow pumps demonstrate potential in improving mortality. The effects of veno-venous extracorporeal membrane oxygenation (V-V ECMO) combined with prone positioning on severe acute respiratory distress syndrome (ARDS) remain uncertain. The survival benefit of extracorporeal cardiopulmonary resuscitation (ECPR) in out-of-hospital cardiac arrest (OHCA) patients has been further validated. The potential benefits of extracorporeal carbon dioxide removal (ECCO2R) require further investigation. Additionally, new guidelines released in 2024 focus on Neurological monitoring and management during ECMO, as well as the Definition and management of right ventricular injury during veno-venous ECMO. ECMO management requires more refined strategies, including optimized oxygenation targets, anticoagulation, blood transfusion, and weaning strategies to improve patient outcomes.
Humans
;
Extracorporeal Membrane Oxygenation/methods*
;
Shock, Cardiogenic/therapy*
;
Cardiopulmonary Resuscitation
;
Myocardial Infarction/therapy*
6.Proteomics in prevention and treatment of post-myocardial infarction heart failure diseases with traditional Chinese medicine.
Feng-Rong ZHANG ; Ying ZHANG ; Ji-Cheng YANG ; Xian-Yu LI ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2024;49(22):6008-6018
Myocardial infarction(MI) is a cardiovascular disease with high disability and mortality rates in clinical practice, which can subsequently develop into complications such as heart failure(HF) or cardiac rupture. Proteomics can track changes in relevant functional molecules during the occurrence and progression of diseases from an overall, molecular, systematic, and flux perspectives. Utilizing proteomic techniques to deeply explore the functional targets, molecular mechanisms, and network effects of MI and HF can aid in early diagnosis, early warning, and drug treatment of these diseases. In recent years, significant progress has been made in the prevention and treatment of HF following MI using traditional Chinese medicine(TCM), particularly in elucidating the complex mechanisms of action through proteomic techniques. This article systematically reviewed research on the intervention mechanisms of TCM compound prescriptions and their active ingredients in HF after MI, and explored related in vivo pathways. Additionally, it discussed the role of proteomics in protein biomarker discovery, post-translational modifications of proteins, protein-protein interactions, spatial proteomics, and more, with the aim of advancing the deep application of proteomic techniques in the prevention and treatment of cardiovascular diseases with TCM.
Humans
;
Proteomics
;
Myocardial Infarction/drug therapy*
;
Heart Failure/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Animals
7.Bioinformatics and animal experiments reveal mechanism of Linggui Zhugan Decoction in ameliorating chronic heart failure after myocardial infarction via HIF-1α/HO-1 signaling pathway.
Han REN ; Shu-Shu WANG ; Wan-Zhu ZHAO ; Shao-Hua XU ; Ke-Dong WEI ; Wan-Wan WU ; Sheng-Yi HUANG ; Rui CAI ; Yuan-Hong ZHANG ; Jin-Ling HUANG
China Journal of Chinese Materia Medica 2024;49(23):6407-6416
This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network. The protein-protein interaction(PPI) network analysis was performed on STRING. R language was used for Gene Ontology(GO) and Kyoto Encycloperfia of Genes and Genomes(KEGG) enrichment analyses. Molecular docking was adopted to validate the core targets. The mouse model of MI-induced CHF was established by surgical ligation of the left anterior descending coronary artery. The modeled mice were assigned into the sham, model, low-, medium-, and high-dose(2.34, 4.68, and 9.36 g·kg~(-1), respectively) LGZGD, and captopril(3.25 mg·kg~(-1)) groups. After continuous administration for 6 weeks, a Doppler ultrasound imaging system was used to examine the heart function indicators: left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), left ventricular end-systolic dimension(LVIDs), and left ventricular end-diastolic dimension(LVIDd). The myocardial tissue was stained with hematoxylin-eosin for the observation of morphological changes. The mRNA levels of microtubule-associated protein 1 light chain 3 beta(LC3B), Beclin1, p62, HIF-1α, and HO-1 in the myocardial tissue were determined by RT-qPCR. The protein levels of LC3B, beclin1, p62, autophagy-related protein 5(ATG5), HIF-1α, and HO-1 were determined by Western blot. The results showed that 103 active components of LGZGD, corresponding to 224 targets, were obtained. A total of 3 485 and 6 165 targets related to MI and CHF, respectively, were retrieved. The GSE16499 dataset obtained 3 263 differentially expressed genes. There were 31 common targets. The top 3 core active components were quercetin, naringenin, and 1-methoxyphaseollidin. The topology analysis results showed that the core targets were MAPK3, HMOX1(HO-1), MYC, ADRB2, PPARD, and HIF1A(HIF-1α). The molecular docking results showed strong binding between the core targets and the main active components of LGZGD. LGZGD significantly improved the heart function and alleviated the pathological changes in the myocardial tissue of mice. Western blot and RT-qPCR results showed that the HIF-1α/HO-1 signaling pathway and autophagy were activated in the model group. LGZGD up-regulated the levels of LC3B, Beclin1, ATG5, HIF-1α, and HO-1 while down-regulating the mRNA and protein levels of p62. In summary, LGZGD can enhance autophagy and improve the heart function in the mouse model of CHF after MI by upregulating the HIF-1α/HO-1 signaling pathway.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Myocardial Infarction/drug therapy*
;
Heart Failure/physiopathology*
;
Mice
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Computational Biology
;
Heme Oxygenase-1/genetics*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Mice, Inbred C57BL
;
Humans
;
Chronic Disease
;
Disease Models, Animal
8.Long-term clinical outcomes after percutaneous coronary intervention for ST-segment elevation myocardial infarction due to late and very late stent thrombosis.
Xiaowei LI ; Yixing YANG ; Mingdong GAO ; Changping LI ; Xiaoyuan WU ; Yin LIU ; Jing GAO
Chinese Critical Care Medicine 2024;36(12):1290-1295
OBJECTIVE:
To explore the prognosis and influencing factors of ST-segment elevation myocardial infarction (STEMI) due to late stent thrombosis (LST) and very late stent thrombosis (VLST).
METHODS:
Patients who underwent percutaneous coronary intervention (PCI) for STEMI caused by LST and VLST at Tianjin Chest Hospital from January 2016 to June 2021 were selected as the study subjects, and long-term follow-up was conducted. The baseline clinical features, laboratory examination indicators, echocardiography results, coronary angiography and intervention treatment characteristics, and antiplatelet treatment status of patients were collected. The study endpoint was major adverse cardiovascular event (MACE), including all-cause mortality, target vessel revascularization (TVR), myocardial infarction, and recurrent stent thrombosis (RST). Patients were divided into MACE group and non-MACE group based on the occurrence of MACE. Cox regression analysis was used to determine the univariate and multivariate predictive factors for MACE occurrence in STEMI patients caused by LST and VLST during long-term follow-up after PCI. Kaplan-Meier survival curves were plotted to analyze the cumulative survival rate without MACE during follow-up in subgroups of patients with different levels of fibrinogen (Fib) and initial number of stents. The incidence of MACE among patients receiving different drug-eluting stent (DES) treatments was compared.
RESULTS:
A total of 418 patients diagnosed STEMI caused by LST and VLST through coronary angiography were enrolled, of which 115 had MACE and 303 did not. Among them, 404 cases (96.65%) completed follow-up, with a median follow-up time of 27.25 (18.00, 37.00) months. Cox regression analysis showed that Fib [hazard ratio (HR) = 2.840, 95% confidence interval (95%CI) was 1.329-6.066, P = 0.007], non-culprit vascular stenosis > 50% (HR = 5.974, 95%CI was 1.634-21.848, P = 0.007), initial stent quantity (HR = 3.314, 95%CI was 1.677-6.552, P = 0.001), B2/C lesions (HR = 5.463, 95%CI was 1.396-21.373, P = 0.015), and cardiogenic shock (HR = 4.141, 95%CI was 1.101-15.568, P = 0.035) were independently associated with the occurrence of MACE. The Kaplan-Meier survival curve showed that the higher the Fib level, the lower the cumulative survival rate without MACE (82.8%, 70.1%, 40.5%, P < 0.01); the more initial stents, the lower the cumulative survival rate without MACE (75.0%, 57.7%, 36.5%), with patients with initial stents ≥ 3 having the lowest cumulative survival rate without MACE (P < 0.001). A total of 210 patients (50.2%) received secondary stent treatment, and there was no significant difference in the incidence of MACE between patients receiving first and second generation DES treatment (27.3% vs. 24.7%, P > 0.05), but patients receiving first generation DES had a higher proportion of all-cause mortality (22.3% vs. 10.1%, P < 0.05). Compared with patients receiving smaller diameter DES treatment (< 2.75 mm), patients receiving larger diameter DES treatment (≥2.75 mm) had a significantly lower incidence of MACE (20.5% vs. 35.9%, P < 0.05).
CONCLUSIONS
Long-term clinical outcomes after PCI for STEMI due to LST and VLST are unfavorable, with a high rate of MACE. The treatment of this particular type STEMI remains challenging, re-implantation of second generation DES or a larger diameter DES (≥2.75 mm) may be beneficial.
Humans
;
Percutaneous Coronary Intervention/methods*
;
ST Elevation Myocardial Infarction/therapy*
;
Stents
;
Prognosis
;
Thrombosis/etiology*
;
Female
;
Male
;
Coronary Angiography
;
Treatment Outcome
;
Risk Factors
;
Middle Aged
;
Drug-Eluting Stents
;
Proportional Hazards Models
9.Safety and efficacy of the early administration of levosimendan in patients with acute non-ST-segment elevation myocardial infarction and elevated NT-proBNP levels: An Early Management Strategy of Acute Heart Failure (EMS-AHF).
Feng XU ; Yuan BIAN ; Guo Qiang ZHANG ; Lu Yao GAO ; Yu Fa LIU ; Tong Xiang LIU ; Gang LI ; Rui Xue SONG ; Li Jun SU ; Yan Ju ZHOU ; Jia Yu CUI ; Xian Liang YAN ; Fang Ming GUO ; Huan Yi ZHANG ; Qing Hui LI ; Min ZHAO ; Li Kun MA ; Bei An YOU ; Ge WANG ; Li KONG ; Jian Liang MA ; Xin Fu ZHOU ; Ze Long CHANG ; Zhen Yu TANG ; Dan Yu YU ; Kai CHENG ; Li XUE ; Xiao LI ; Jiao Jiao PANG ; Jia Li WANG ; Hai Tao ZHANG ; Xue Zhong YU ; Yu Guo CHEN
Chinese Journal of Internal Medicine 2023;62(4):374-383
Objectives: To investigated the safety and efficacy of treating patients with acute non-ST-segment elevation myocardial infarction (NSTEMI) and elevated levels of N-terminal pro-hormone B-type natriuretic peptide (NT-proBNP) with levosimendan within 24 hours of first medical contact (FMC). Methods: This multicenter, open-label, block-randomized controlled trial (NCT03189901) investigated the safety and efficacy of levosimendan as an early management strategy of acute heart failure (EMS-AHF) for patients with NSTEMI and high NT-proBNP levels. This study included 255 patients with NSTEMI and elevated NT-proBNP levels, including 142 males and 113 females with a median age of 65 (58-70) years, and were admitted in the emergency or outpatient departments at 14 medical centers in China between October 2017 and October 2021. The patients were randomly divided into a levosimendan group (n=129) and a control group (n=126). The primary outcome measure was NT-proBNP levels on day 3 of treatment and changes in the NT-proBNP levels from baseline on day 5 after randomization. The secondary outcome measures included the proportion of patients with more than 30% reduction in NT-proBNP levels from baseline, major adverse cardiovascular events (MACE) during hospitalization and at 6 months after hospitalization, safety during the treatment, and health economics indices. The measurement data parameters between groups were compared using the t-test or the non-parametric test. The count data parameters were compared between groups using the χ² test. Results: On day 3, the NT-proBNP levels in the levosimendan group were lower than the control group but were statistically insignificant [866 (455, 1 960) vs. 1 118 (459, 2 417) ng/L, Z=-1.25,P=0.21]. However, on day 5, changes in the NT-proBNP levels from baseline in the levosimendan group were significantly higher than the control group [67.6% (33.8%,82.5%)vs.54.8% (7.3%,77.9%), Z=-2.14, P=0.03]. There were no significant differences in the proportion of patients with more than 30% reduction in the NT-proBNP levels on day 5 between the levosimendan and the control groups [77.5% (100/129) vs. 69.0% (87/126), χ²=2.34, P=0.13]. Furthermore, incidences of MACE did not show any significant differences between the two groups during hospitalization [4.7% (6/129) vs. 7.1% (9/126), χ²=0.72, P=0.40] and at 6 months [14.7% (19/129) vs. 12.7% (16/126), χ²=0.22, P=0.64]. Four cardiac deaths were reported in the control group during hospitalization [0 (0/129) vs. 3.2% (4/126), P=0.06]. However, 6-month survival rates were comparable between the two groups (log-rank test, P=0.18). Moreover, adverse events or serious adverse events such as shock, ventricular fibrillation, and ventricular tachycardia were not reported in both the groups during levosimendan treatment (days 0-1). The total cost of hospitalization [34 591.00(15 527.46,59 324.80) vs. 37 144.65(16 066.90,63 919.00)yuan, Z=-0.26, P=0.80] and the total length of hospitalization [9 (8, 12) vs. 10 (7, 13) days, Z=0.72, P=0.72] were lower for patients in the levosimendan group compared to those in the control group, but did not show statistically significant differences. Conclusions: Early administration of levosimendan reduced NT-proBNP levels in NSTEMI patients with elevated NT-proBNP and did not increase the total cost and length of hospitalization, but did not significantly improve MACE during hospitalization or at 6 months.
Male
;
Female
;
Humans
;
Aged
;
Natriuretic Peptide, Brain
;
Simendan/therapeutic use*
;
Non-ST Elevated Myocardial Infarction
;
Heart Failure/drug therapy*
;
Peptide Fragments
;
Arrhythmias, Cardiac
;
Biomarkers
;
Prognosis

Result Analysis
Print
Save
E-mail