1.The inhibition effect of SOCS1 gene on the growth of human myelodysplastic syndrome cells and its potential mechanisms.
Yongxiao ZHANG ; Yinghua LI ; Rui SHI
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):221-227
Objective To investigate the regulatory effect of suppressor of cytokine signaling 1 (SOCS1) on the proliferation and apoptosis of myelodysplastic syndrome (MDS) cells SKM-1 and its potential mechanisms. Methods SOCS1 was overexpressed in SKM-1 cells by transfection with exogenous SOCS1-overexpressing plasmid. Cell viability, cell cycle and apoptosis were analyzed with CCK-8 and flow cytometry assays, respectively. Western blot was used to evaluate the expression of proteins related to the Janus kinase 2/signal transducer and activator of transcription (JAK2/STAT) signaling pathway. Additionally, a NOD/SCID mouse model of MDS was established to record mouse body weight and survival time, assessing the impact of the SOCS1 gene on the growth of SKM-1 cells in vivo. Results Transfection of the SOCS1-overexpressing plasmid significantly increased the mRNA and protein expression levels of SOCS1 in the MDS cell line SKM-1. Overexpression of SOCS1 remarkably reduced cell viability, inhibited cell proliferation, and promoted apoptosis of SKM-1 cells, which also decreased the expression of phosphorylated-JAK2 (p-JAK2), phosphorylated-STAT3 (p-STAT3), and p-STAT5 proteins. Furthermore, in vivo experiment results showed that the body weight and survival time of mice in the SOCS1 overexpression group were significantly better than those in the MDS model group, and the number of CD45+ SKM-1 cells in the peripheral blood was significantly lower than that in the MDS model group, indicating that SOCS1 overexpression could inhibit the activity of SKM-1 cells in mice. Western blot results verified the protein expression level of SOCS1 in the bone marrow of mice in the SOCS1 overexpression group was significantly higher than that in the MDS model group, while the protein expression levels of p-JAK2, p-STAT3, and p-STAT5 were significantly lower than those in the MDS model group. Conclusion SOCS1 inhibits the proliferation of MDS cell line SKM-1 and promotes its apoptosis by negatively regulating the JAK2/STAT signaling pathway, making it a potential therapeutic target for myelodysplastic syndromes.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Body Weight
;
Bone Marrow/metabolism*
;
Janus Kinase 2/metabolism*
;
Mice, Inbred NOD
;
Mice, SCID
;
Myelodysplastic Syndromes/metabolism*
;
Phosphorylation
;
STAT3 Transcription Factor/metabolism*
;
STAT5 Transcription Factor/metabolism*
;
Suppressor of Cytokine Signaling 1 Protein/metabolism*
;
Cell Proliferation
2.Research progress of iron metabolism and ferroptosis in myeloid neoplasms.
Yudi WANG ; Weiying FENG ; Fudi WANG ; Junxia MIN
Journal of Zhejiang University. Medical sciences 2024;53(6):735-746
It is reported that iron metabolism and ferroptosis can influence the occurrence and development of myeloid tumors, which can serve as therapeutic targets. Dysregulation of iron metabolism is present in a variety of myeloid neoplasms. The prognosis of acute myeloid leukemia is related to differential expression of molecules related to iron metabolism. The prognosis of myelodysplastic syndrome patients with iron overload is poor. Myeloproliferative neoplasms are often characterized by the coexistence of iron deficiency and erythrocytosis, which can be treated by targeting hepcidin. Myeloid tumor cells are susceptible to oxidative damage caused by the accumulation of reactive oxygen species and are sensitive to ferroptosis. Ferroptosis has anti-tumor effect in acute myeloid leukemia and myelodysplastic syndrome. Targeting ferroptosis can reverse imatinib resistance in chronic myeloid leukemia. This article reviews the characteristics of iron metabolism in the development and progression of myeloid neoplasms, as well as the mechanism of ferroptosis, to provide a basis for the development of new therapeutic strategies.
Ferroptosis
;
Humans
;
Iron/metabolism*
;
Myelodysplastic Syndromes/pathology*
;
Reactive Oxygen Species/metabolism*
;
Leukemia, Myeloid, Acute/pathology*
;
Hepcidins/metabolism*
;
Iron Overload/metabolism*
;
Myeloproliferative Disorders/metabolism*
;
Prognosis
3.Influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome: A retrospective study.
Yao ZHANG ; Chao XIAO ; Jing LI ; Lu Xi SONG ; You Shan ZHAO ; Jun Gong ZHAO ; Chun Kang CHANG
Chinese Journal of Hematology 2022;43(4):293-299
Objective: To analyze the influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome. Methods: MRI and/or DECT were used to detect liver and cardiac iron content in 181 patients with MDS, among whom, 41 received regular iron chelation therapy during two examinations. The adjusted ferritin (ASF) , erythropoietin (EPO) , cardiac function, liver transaminase, hepatitis antibody, and peripheral blood T cell polarization were detected and the results of myelofibrosis, splenomegaly, and cyclosporine were collected and comparative analyzed in patients. Results: We observed a positive correlation between liver iron concentration and ASF both in the MRI group and DECT groups (r=0.512 and 0.606, respectively, P<0.001) , only a weak correlation between the heart iron concentration and ASF in the MRI group (r=0.303, P<0.001) , and no significant correlation between cardiac iron concentration and ASF in the DECT group (r=0.231, P=0.053) . Moreover, transfusion dependence in liver and cardiac [MRI group was significantly associated with the concentration of iron in: LIC: (28.370±10.706) mg/g vs (7.593±3.508) mg/g, t=24.30, P<0.001; MIC: 1.81 vs 0.95, z=2.625, P<0.05; DECT group: liver VIC: (4.269±1.258) g/L vs (1.078±0.383) g/L, t=23.14, P<0.001: cardiac VIC: 1.69 vs 0.68, z=3.142, P<0.05]. The concentration of EPO in the severe iron overload group was significantly higher than that in the mild to moderate iron overload group and normal group (P<0.001) . Compared to the low-risk MDS group, the liver iron concentration in patients with MDS with cyclic sideroblasts (MDS-RS) was significantly elevated [DECT group: 3.80 (1.97, 5.51) g/L vs 1.66 (0.67, 2.94) g/L, P=0.004; MRI group: 13.7 (8.1,29.1) mg/g vs 11.6 (7.1,21.1) mg/g, P=0.032]. Factors including age, bone marrow fibrosis, splenomegaly, T cell polarization, use of cyclosporine A, liver aminotransferase, and hepatitis antibody positive had no obvious effect on iron metabolism. Conclusion: There was a positive correlation between liver iron concentration and ASF in patients with MDS, whereas there was no significant correlation between cardiac iron concentration and ASF. Iron metabolism was affected by transfusion dependence, EPO concentration, and RS.
Ferritins
;
Humans
;
Iron
;
Iron Overload
;
Liver/metabolism*
;
Myelodysplastic Syndromes/therapy*
;
Primary Myelofibrosis
;
Retrospective Studies
;
Splenomegaly
4.The Latest Research Progress on Myelodysplastic Syndrome Patient-derived Mesenchymal Stem Cell--Review.
Fan LI ; Hai-Ping HE ; Li-Hua ZHANG ; Xiao-Sui LING
Journal of Experimental Hematology 2022;30(4):1286-1290
Myelodysplastic syndrome (MDS) are a heterogeneous group of hematological malignancies. Currently, in addition to demethylated chemotherapy and hematopoietic stem cell transplantation, MDS patient-derived mesenchymal stem cells (MDS-MSC) play an important role in understanding the pathogenesis of MDS and related therapeutic targets. For example, abnormal expression of DICER1 gene, abnormalities of PI3K/AKT and Wnt/β-catenin signaling pathways provide new therapeutic targets for MDS. In addition, MDS-MSC is also affected by abnormal microenvironment of the body, such as inflammatory factor S100A9, as well as hypercoagulation and iron overload. In this review, genes, signaling pathways, cytokines, hematopoietic microenvironment, and the effect of therapeutic drugs for MDS-MSC were briefly summarized.
Cytokines/metabolism*
;
DEAD-box RNA Helicases/metabolism*
;
Hematologic Neoplasms/metabolism*
;
Humans
;
Mesenchymal Stem Cells
;
Myelodysplastic Syndromes/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Ribonuclease III/metabolism*
;
Tumor Microenvironment
5.Expression of Wilms' Tumor 1 Gene in Bone Marrow of Patients with Myelodysplastic Syndrome and Its Clinical Significance.
Dan-Qi PAN ; Wen-Shu ZHAO ; Chang-Xin YIN ; Han HE ; Ren LIN ; Ke ZHAO ; Jie-Yu YE ; Qi-Fa LIU ; Min DAI
Journal of Experimental Hematology 2022;30(5):1501-1507
OBJECTIVE:
To investigate the expression level and clinical significance of Wilms' tumor 1 (WT1) in bone marrow of patients with myelodysplastic syndromes (MDS).
METHODS:
The clinical data of 147 MDS patients who accepted real-time quantitative polymerase chain reaction (RT-PCR) to detect the expression level of WT1 in bone marrow before treated in Nanfang Hospital, Southern Medical University from January 2017 to April 2021 were retrospectively analyzed. According to the expression level of WT1, the patients were divided into WT1+ group and WT1- group, their clinical characteristics and prognosis were analyzed.
RESULTS:
The positive rate of WT1 in 147 MDS patients was 82.3%. There were significant differences in bone marrow blast count, aberrant karyotypes, WHO 2016 classification, and IPSS-R stratification between WT1+ group and WT1- group (all P<0.05). Furthermore, the higher the malignant degree of MDS subtype and the risk stratification of IPSS-R, the higher expression level of WT1. Compared with WT1- group, there were no differences in overall survival (OS) time and the time of transformation to AML in WT1+ group (both P>0.05). In patients who did not accept transplantation, the median OS time of WT1+ patients was significantly shorter than that of WT1- patients (P=0.049). Besides, regarding WT1+ group, patients who underwent transplantation had longer OS time and lower mortality than those who received hypomethylating agents (P=0.002, P=0.005).
CONCLUSION
WT1 expression level directly reflects the disease progression, and it is also associated with prognosis of MDS patients.
Bone Marrow/metabolism*
;
Humans
;
Myelodysplastic Syndromes/diagnosis*
;
Prognosis
;
Retrospective Studies
;
WT1 Proteins/metabolism*
6.IL-32 mRNA Expression of Bone Marrow Stromal Cells and Its Correlation with Cell Apoptosis in Patients with Myelodysplastic Syndrome.
Yuan-Yu ZHANG ; Li XU ; Da-Qi LI ; Jian-Hua SHAO ; Ping CHEN ; Hong-Yu ZHAO ; Xue-Bin DONG ; Lin-Ping GU ; Wei WU
Journal of Experimental Hematology 2016;24(3):773-778
OBJECTIVETo investigate the IL-32 mRNA expression of bone marrow stromal cells and its correlation with apoptosis of bone marrow mononuclear cells in patients with myelodysplastic syndrome (MDS).
METHODSBone marrow samples from 26 MDS patients and 10 iron deficiency anemia (IDA, as control) patients were collected, RT-PCR was used to detect the IL-32 mRNA expression of bone marrow stromal cells, and the apoptosis of bone marrow mononuclear cells was detected by flow cytometry with Annexin V-FITC/PI dowble staining. The born marrow lymphocytes and NK cells were detected by means of direct immunofluorescence labeling whole blood hemolysis and flow cytometry.
RESULTSIL-32 mRNA expression of bone marrow stromal cells in the MDS patients was significantly higher than that of control group, the IL-32 mRNA expression of bone marrow stromal cells in patients with RA, RAS and RCMD was significantly higher than that in patients with RAEB. There was no obvious difference between RAEB and the control groups. The apoptosis of bone marrow mononuclear cells in MDS group was significantly higher than that in the control group, the apoptosis of bone marrow mononuclear cells in patients with RA, RAS and RCMD was significantly higher than that in RAEB. There was no significant difference between RAEB group and control group. The IL-32 mRNA expression in bone marrow stromal cells significantly correlated with the apoptosis of bone marrow mononuclear cells in MDS patients. The NK cell number in born marrow of MDS patients and the control group had no significant difference.
CONCLUSIONThe expression of IL-32 mRNA in bone marrow stromal cells significantly relates with the apoptosis of MDS cells, and the secretion of IL-32 by bone marrow stromal cells may be one of the reasons for the apoptosis of MDS bone marrow cells. It is speculated that the abnormal MDS bone marrow microenvironment is involved in the apoptosis of bone marrow cells.
Apoptosis ; Bone Marrow Cells ; metabolism ; Flow Cytometry ; Humans ; Interleukins ; metabolism ; Mesenchymal Stromal Cells ; metabolism ; Myelodysplastic Syndromes ; pathology ; RNA, Messenger ; metabolism
7.Clinical Relevance of p53 Immunohistochemical Stain in the Differential Diagnosis Between Pediatric Aplastic Anemia and Refractory Cytopenia of Childhood.
Sang Hyuk PARK ; Hyun Sook CHI ; Young Uk CHO ; Seongsoo JANG ; Chan Jeoung PARK ; Ho Joon IM ; Jong Jin SEO
Annals of Laboratory Medicine 2016;36(2):174-176
No abstract available.
Adolescent
;
Anemia, Aplastic/*diagnosis/pathology
;
Bone Marrow/pathology
;
Child
;
Child, Preschool
;
Diagnosis, Differential
;
Female
;
Half-Life
;
Humans
;
Immunohistochemistry
;
Male
;
Mutation
;
Myelodysplastic Syndromes/*diagnosis/pathology
;
Retrospective Studies
;
Tumor Suppressor Protein p53/genetics/*metabolism
8.Effect of Dexamethasone on Blast Composition in Patients with Myelodysplastic Syndrome and Its Diagnostic Significance.
Fan ZHANG ; Zhao-Bo LI ; Ning-Ning WANG ; Shuai LIU ; Bao-Hong YUE
Journal of Experimental Hematology 2016;24(1):144-149
OBJECTIVETo analyze the effect of dexamethason (Dex) on blast composition in patients with myelodysplastic syndrome (MDS) and investigate its significance in diagnosis of MDS.
METHODSThe flow cytometry (FCM) was used to detect the blast rate and the expression of its antigens in 30 cases of MDS (10 cases were treated with Dex as DX group and 20 cases were treated without Dex as control group).
RESULTSThe difference of the CD34(+) cell number detected by FCM was not statistically significant between DX group and control group (P > 0.05); The rate of BM B cell precursors (BCP CD34(+)/CD19(+)/CD10(+) cells) increased in DX group significantly, and BM CD117(+) cells in CD34(+) cells was decreased significantly as compared with control group (P < 0.001). The expression of antigens between granulocyte and monocyte was not significantly different (P > 0.05).
CONCLUSIONThe dexamethasone can increase the rate of BCP significantly and decreased the rate of BM CD117(+) cells in CD34(+) cells significantly. There is significant influence on the blast composition in MDS patients after dexamethasone treatment and without significant influence on the other phenotypcs.
Antigens, CD34 ; metabolism ; Dexamethasone ; therapeutic use ; Flow Cytometry ; Granulocytes ; cytology ; Humans ; Monocytes ; cytology ; Myelodysplastic Syndromes ; drug therapy ; Precursor Cells, B-Lymphoid ; cytology ; Proto-Oncogene Proteins c-kit ; metabolism
9.Autophagy Activity of CD34+ Cells in MDS Patients and Its Clinical Significance.
Feng JIANG ; Yuan-Yuan WANG ; Jian-Nong CEN ; Zi-Xing CHEN ; Jian-Ying LIANG ; Dan-Dan LIU ; Jin-Lan PAN ; Ming-Qing ZHU ; Su-Ning CHEN
Journal of Experimental Hematology 2016;24(3):779-783
OBJECTIVETo explore the autophagy activity of CD34+ cells in bone marrow of MDS patients and its clinical significance.
METHODSThe activity of autophagy in bone marrow CD34+ cells from 20 MDS patients, 20 non-malignant anemia patients and 5 AML patients admitted in our hospital from October 2012 to March 2014 was detected by flow cytometry (FCM).
RESULTSThe autophagy activity in low risk MDS patients and non-malignant anemia patients were both significantly higher than that in both high risk MDS and AML patients (P<0.05), and more interestingly, the autophagy activity in MDS negatively correlated with World Health Organization classification-based prognostic system (WPSS) score (r=-0.877) .
CONCLUSIONThe autophagy activity CD34+ cells in the patients with MDS is higher than that in AML patients, and negatively correlated with WPSS scores, indicating that the decrease of autophagy activity maybe accelerate the genesis and development of MDS and relate with the prognosis of MDS patients.
Antigens, CD34 ; metabolism ; Autophagy ; Bone Marrow Cells ; cytology ; pathology ; Flow Cytometry ; Humans ; Leukemia, Myeloid, Acute ; pathology ; Myelodysplastic Syndromes ; pathology ; Prognosis
10.Autophagy level of bone marrow mononuclear cells in patients with myelodysplastic syndromes.
Lifang GUO ; Ningbo CUI ; Huaquan WANG ; Rong FU ; Wen QU ; Erbao RUAN ; Xiaoming WANG ; Guojin WANG ; Yuhong WU ; Hong LIU ; Jia SONG ; Jing GUAN ; Limin XING ; Lijuan LI ; Huijuan JIANG ; Hui LIU ; Yihao WANG ; Chunyan LIU ; Wei ZHANG ; Zonghong SHAO
Chinese Journal of Hematology 2015;36(12):1016-1019
OBJECTIVETo investigate the change of autophagy level of bone marrow mononuclear cells(BMMNCs)in patients with myelodysplastic syndromes(MDS).
METHODSThirty- eight patients with MDS and 26 megaloblastic anemia patients were enrolled in this study. The autophagic vacuoles were observed by transmission electron microscopy (TEM) and the quantity of autophagic vacuoles was detected by monodansylcadaverine (MDC) staining. The LC3 protein positive cells were counted by immunofluorescence assays. The expression of Beclin 1, LC3A, mTOR mRNA were measured by real time PCR. The expression of Beclin 1 proteins were detected by Western blotting.
RESULTSThe autophgic vacuoles of double membrane that surrounds lysosomes appeared in MDS patients. The percentage of MDC positive cells was significantly higher in MDS patients[(9.75±2.63)%]than that of controls[(2.90± 0.89)%, P<0.05). The percentage of LC3 protein cells was also increased in MDS patients(6.13±1.03)% vs(1.5±0.58)%, P<0.05). The expression of Beclin 1 and LC3A mRNA in low-risk and intermediate-1 MDS were higher compared with controls (3.61 ± 3.02 vs 1.55 ± 1.03 and 6.56 ± 3.97 vs 1.21 ± 0.95 respectively, both P<0.05). The expression of mTOR mRNA was down- regulated in low- risk and intermediate-1 MDS compared with controls(0.39±0.37 vs 1.50±1.03, P<0.05). There were no significant difference in expression of Beclin 1, LC3 and mTOR mRNA among intermediate-2 and high-risk MDS and controls. Beclin 1 protein expression was higher in low- risk and intermediate- 1 MDS patients(1.257 ± 0.197)than that of controls(0.528±0.086)and inermediate-2 and high-risk MDS patients(0.622±0.118).
CONCLUSIONThe autophagy levels were increased in low- risk and intermediate- 1 MDS, while not enhanced in intermediate-2 MDS. Autophagy might be considered as a cell protective mechanism in MDS. The relatively defective autophagy in intermediate- 2 and high- risk MDS might contribute to disease's progression.
Apoptosis Regulatory Proteins ; metabolism ; Autophagy ; Beclin-1 ; Bone Marrow Cells ; cytology ; Humans ; Membrane Proteins ; metabolism ; Microscopy, Electron, Transmission ; Microtubule-Associated Proteins ; metabolism ; Myelodysplastic Syndromes ; pathology ; TOR Serine-Threonine Kinases ; metabolism ; Vacuoles ; ultrastructure

Result Analysis
Print
Save
E-mail