1.Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):374-390
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Animals
;
Autophagy/physiology*
;
Oligodendroglia/metabolism*
;
Myelin Sheath/physiology*
;
Aging/pathology*
;
Myelin Basic Protein/metabolism*
;
Cell Lineage/physiology*
;
Mice
;
Oligodendrocyte Precursor Cells
;
Mice, Inbred C57BL
;
Brain/cytology*
;
Cells, Cultured
;
Cell Count
2.Cation Channel TMEM63A Autonomously Facilitates Oligodendrocyte Differentiation at an Early Stage.
Yue-Ying WANG ; Dan WU ; Yongkun ZHAN ; Fei LI ; Yan-Yu ZANG ; Xiao-Yu TENG ; Linlin ZHANG ; Gui-Fang DUAN ; He WANG ; Rong XU ; Guiquan CHEN ; Yun XU ; Jian-Jun YANG ; Yongguo YU ; Yun Stone SHI
Neuroscience Bulletin 2025;41(4):615-632
Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A; p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a-/- OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a-/- OPCs in vitro and myelination in Tmem63a-/- mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca2+ influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.
Animals
;
Cell Differentiation/physiology*
;
Oligodendroglia/metabolism*
;
Mice, Knockout
;
Mice
;
Male
;
Myelin Sheath/metabolism*
;
Humans
;
Child
;
Cells, Cultured
;
Oligodendrocyte Precursor Cells/metabolism*
3.Histopathological Insights into Demyelination and Remyelination After Spinal Cord Injury in Non-human Primates.
Junhao LIU ; Zucheng HUANG ; Kinon CHEN ; Rong LI ; Zhiping HUANG ; Junyu LIN ; Hui JIANG ; Jie LIU ; Qingan ZHU
Neuroscience Bulletin 2025;41(8):1429-1447
Demyelination and remyelination play key roles in spinal cord injury (SCI), affecting the recovery of motor and sensory functions. Research in rodent models is extensive, but the study of these processes in non-human primates is limited. Therefore, our goal was to thoroughly study the histological features of demyelination and remyelination after contusion injury of the cervical spinal cord in Macaca fascicularis. In a previous study, we created an SCI model in M. fascicularis by controlling the contusion displacement. We used Eriochrome Cyanine staining, immunohistochemical analysis, and toluidine blue staining to evaluate demyelination and remyelination. The results showed demyelination ipsilateral to the injury epicenter both rostrally and caudally, the former mainly impacting sensory pathways, while the latter primarily affected motor pathways. Toluidine blue staining showed myelin loss and axonal distension at the injury site. Schwann cell-derived myelin sheaths were only found at the center, while thinner myelin sheaths from oligodendrocytes were seen at the center and surrounding areas. Our study showed that long-lasting demyelination occurs in the spinal cord of M. fascicularis after SCI, with oligodendrocytes and Schwann cells playing a significant role in myelin sheath formation at the injury site.
Animals
;
Spinal Cord Injuries/physiopathology*
;
Demyelinating Diseases/etiology*
;
Remyelination/physiology*
;
Macaca fascicularis
;
Disease Models, Animal
;
Myelin Sheath/pathology*
;
Oligodendroglia/pathology*
;
Schwann Cells/pathology*
;
Female
;
Spinal Cord/pathology*
;
Axons/pathology*
4.Research status and prospect of remyelination in multiple sclerosis based on "inflammation-tissue" homeostatic coupling.
Li-Na YANG ; Xin-Ke DU ; Li LIU ; Man-Jing LI ; Qing-Sen RAN ; Qing YANG ; Li-Dong SUN ; Yu-Jie LI ; Ying CHEN ; Xiao-Xin ZHU ; Qi LI
China Journal of Chinese Materia Medica 2023;48(1):5-12
Multiple sclerosis(MS) shows the pathological characteristics of "inflammatory injury of white matter" and "myelin repair disability" in the central nervous system(CNS). It is very essential for MS treatment and reduction of disease burden to strengthen repair, improve function, and reduce disability. Accordingly, different from the simple immunosuppression, we believe that key to strengthening remyelination and maintaining the "damage-repair" homeostasis of tissue is to change the current one-way immunosuppression strategy and achieve the "moderate pro-inflammation-effective inflammation removal" homeostasis. Traditional Chinese medicine shows huge potential in this strategy. Through literature research, this study summarized the research on remyelination, discussed the "mode-rate pro-inflammation-effective inflammation removal" homeostasis and the "damage-repair" homeostasis based on microglia, and summed up the key links in remyelination in MS. This review is expected to lay a theoretical basis for improving the function of MS patients and guide the application of traditional Chinese medicine.
Humans
;
Multiple Sclerosis/pathology*
;
Remyelination/physiology*
;
Myelin Sheath/pathology*
;
Inflammation/drug therapy*
;
Homeostasis
5.Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity.
Bin ZHANG ; Wenfeng SU ; Junxia HU ; Jinghui XU ; Parizat ASKAR ; Shuangxi BAO ; Songlin ZHOU ; Gang CHEN ; Yun GU
Neuroscience Bulletin 2022;38(7):720-740
Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.
Animals
;
Axons
;
Chromatin/metabolism*
;
Gene Expression Profiling
;
Myelin Sheath/metabolism*
;
Nerve Regeneration/physiology*
;
Rats
;
Schwann Cells/metabolism*
;
Sciatic Nerve/injuries*
6.AATYK is a Novel Regulator of Oligodendrocyte Differentiation and Myelination.
Chunxia JIANG ; Wanqing YANG ; Zhihong FAN ; Peng TENG ; Ruyi MEI ; Junlin YANG ; Aifen YANG ; Mengsheng QIU ; Xiaofeng ZHAO
Neuroscience Bulletin 2018;34(3):527-533
Oligodendrocytes (OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK (apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYK-deficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.
Animals
;
Animals, Newborn
;
Apoptosis Regulatory Proteins
;
genetics
;
metabolism
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Proliferation
;
drug effects
;
genetics
;
Cells, Cultured
;
Cuprizone
;
toxicity
;
Demyelinating Diseases
;
chemically induced
;
metabolism
;
pathology
;
Embryo, Mammalian
;
Gene Expression Regulation, Developmental
;
genetics
;
Ki-67 Antigen
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Myelin Basic Protein
;
metabolism
;
Myelin Proteolipid Protein
;
metabolism
;
Myelin Sheath
;
drug effects
;
metabolism
;
Oligodendroglia
;
drug effects
;
metabolism
;
Protein-Tyrosine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
7.Improved neurite outgrowth on central nervous system myelin substrate by siRNA-mediated knockdown of Nogo receptor.
Sheng-Hao DING ; Ying-Hui BAO ; Jian-Hong SHEN ; Guo-Yi GAO ; Yao-Hua PAN ; Qi-Zhong LUO ; Ji-Yao JIANG
Chinese Journal of Traumatology 2016;19(1):16-24
PURPOSETo investigate the in vitro effect of short interfering RNAs (siRNAs) against Nogo receptor (NgR) on neurite outgrowth under an inhibitory substrate of central nervous system (CNS) myelin.
METHODSThree siRNA sequences against NgR were designed and transfected into cerebellar granule cells (CGCs) to screen for the most effcient sequence of NgR siRNA by using reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence staining. NgR siRNA sequence 1 was found the most efficient which was then transfected into the CGCs grown on CNS myelin substrate to observe its disinhibition for neurite outgrowth.
RESULTSCompared with the scrambled control sequence of siRNA, the NgR siRNA sequence 1 significantly decreased NgR mRNA level at 24 h and 48 h (p <0.05), which was recovered by 96 h after transfection. NgR immunoreactivity was also markedly reduced at 24 and 48 h after the transfection of siRNA sequence 1 compared with that before transfection (p<0.05). The NgR immunoreactivity was recovered after 72 h post-transfection. Moreover, the neurite outgrowth on the myelin substrate was greatly improved within 72 h after the transfection with siRNA sequence 1 compared with the scrambled sequence-transfected group or non-transfected group (p<0.05).
CONCLUSIONsiRNA-mediated knockdown of NgR expression contributes to neurite outgrowth in vitro.
Animals ; Cells, Cultured ; Myelin Sheath ; physiology ; Neuronal Outgrowth ; physiology ; Nogo Receptor 1 ; antagonists & inhibitors ; genetics ; physiology ; RNA, Small Interfering ; Rats ; Rats, Sprague-Dawley
8.Evaluation of white matter myelination in preterm infants using DTI and MRI.
Bing-Xiao LI ; Guo-Sheng LIU ; Xue-Ying LING ; Han-Fang CHEN ; Xian-Qiong LUO
Chinese Journal of Contemporary Pediatrics 2016;18(6):476-481
OBJECTIVETo investigate the features of white matter myelin development in preterm infants using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI).
METHODSA total of 31 preterm infants with a gestational age of ≤32 weeks and a birth weight of <1 500 g were enrolled. According to head MRI findings, these infants were divided into preterm group with brain injury (12 infants) and preterm group without brain injury (19 infants). A total of 24 full-term infants were enrolled as control group. Head MRI and DTI were performed at a gestational age or corrected gestational age of 37-40 weeks. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured for the same regions of interest in the three groups.
RESULTSThe preterm group with brain injury showed a significantly lower FA value of the posterior limb of the internal capsule than the preterm group without brain injury and full-term control group (P<0.05). The preterm groups with and without brain injury showed significantly lower FA values of frontal white matter and lenticular nucleus than the full-term control group (P<0.05). The FA value of occipital white matter showed no significant differences among the three groups (P>0.05). Compared with the full-term control group, the preterm groups with and without brain injury showed significantly higher ADC values of the posterior limb of the internal capsule, lenticular nucleus, occipital white matter, and frontal white matter (P<0.05).
CONCLUSIONSAfter brain injury, preterm infants tend to develop disorder or delay of white matter myelination in the posterior limb of the internal capsule. At a corrected full-term gestational age, the preterm infants with and without brain injury have a lower grade of maturity in periventricular white matter and grey matter than full-term infants.
Brain Injuries ; physiopathology ; Diffusion Tensor Imaging ; methods ; Humans ; Infant, Newborn ; Infant, Premature ; physiology ; Magnetic Resonance Imaging ; methods ; Myelin Sheath ; physiology ; White Matter ; growth & development
9.Endogenous self-repair in immature white matter induced by ischemia in neonatal rats.
Wen-Juan LI ; Hui-Jin CHEN ; Long-Hua QIAN ; Feng-Xia MAO
Chinese Journal of Contemporary Pediatrics 2012;14(7):548-553
OBJECTIVETo study in vivo the endogenous self-repair mechanism in immature white matter induced by ischemia in neonatal rats with periventricular leukomalacia (PVL).
METHODSFive-day-old neonatal Sprague-Dawley (SD) rats were randomly divided into sham and PVL groups. Rat model of PVL was prepared by ligation of the right common carotid artery following 2 hours of exposure to 8% oxygen. Pathological changes and myelination in the white matter were assessed under light and electron microscopy at 7 and 21 days after PVL. O4-positive OL precursor cells in the white matter were determined with immunofluorescence staining. Activation, proliferation, migration and differentiation of glial progenitor cells in SVZ were observed using immunofluorescent double labeling of either NG2 (marker of progenitor cells) and 5-bromodeoxyuridine (BrdU), or O4 (marker of OL precursor cells) and BrdU.
RESULTSAll rats in the PVL group manifested either mild or severe white matter injury under light microscopy, and had higher pathological scores of white matter compared with the sham group at 7 and 21 days after PVL (P<0.05). Electron microscopy showed that the number and thickness of myelin sheath in the PVL group were significantly reduced compared with the sham group (P<0.01). O4-positive OL precursor cells in the white matter observed under fluorescence microscopy were significantly reduced in the PVL group compared with the sham group (P<0.05). BrdU/NG2-positive cells in the SVZ increased significantly in the PVL group 48 hours after PVL and migrated into the periventricular area, reaching a peak on day 7 after PVL. BrdU/O4-positive newborn cells began to appear in the periventricular area 72 hours after PVL, and the number of BrdU/O4-positive cells in the PVL group was statistically more than in the sham group on day 21 after PVL (P<0.05).
CONCLUSIONSIschemia may induce brain self-repair in neonatal rats, resulting in activation and proliferation of NG2 glial progenitor cells in the SVZ migration and differentiation into OL precursor cells in periventricular white matter.
Animals ; Animals, Newborn ; Brain ; pathology ; Brain Ischemia ; pathology ; Bromodeoxyuridine ; metabolism ; Cell Differentiation ; Disease Models, Animal ; Humans ; Infant, Newborn ; Leukomalacia, Periventricular ; pathology ; Myelin Sheath ; physiology ; Neuroglia ; pathology ; Rats ; Rats, Sprague-Dawley ; Stem Cells ; pathology
10.The Role of Endothelin Receptor A during Myelination of Developing Oligodendrocytes.
Kyung Jin JUNG ; Dong Woon KIM ; Ha Na LEE ; Young Sook LEE ; Sung Joong LEE ; Jeong Hwan CHE ; Young Ho LEE ; Byeong Cheol KANG
Journal of Korean Medical Science 2011;26(1):92-99
Endothelin (ET)-1 and its receptors (ETA and ETB receptor) are present in the central nervous system. ET exerts biological effects on gliogenesis and glial cell functions. In order to define a possible mechanism of ETA receptor signaling, the distribution of the ETA receptor in developing oligodendrocytes and the effects of ET-1 on the myelination of oligodendrocytes were examined. ETA receptor immunoreactivity was confined to the perivascular elements of the blood vessels during early postnatal development. However later in development, ETA receptor immunoreactivity was no longer observed in the vessels but became localized to the myelinating oligodendrocytes of the primitive corpus callosum of the white matter, apart from the vessels. ET-1 induced myelin basic protein (MBP) in primary oligodendrocyte precursor cell culture though the ETA receptor and was blocked by an ETA receptor antagonist. In addition, ET-1 evoked the release of Ca2+ which is a central regulator of oligodendrocyte differentiation. Our results provide a link between ET-1 and its ETA receptor and myelination during oligodendrocyte differentiation.
Animals
;
Brain/pathology
;
Calcium/metabolism
;
Calcium Signaling
;
Cells, Cultured
;
Endothelin-1/metabolism/physiology
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Proteins/genetics/metabolism
;
Myelin Sheath/*physiology
;
Oligodendroglia/cytology/*metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Endothelin A/metabolism/*physiology

Result Analysis
Print
Save
E-mail