1.Modified Shuyu Pills regulate VTA-NAc circuit myelination to ameliorate depressive behaviors in mouse model of vascular dementia via LDLR/MEK/ERK signaling pathway.
Song JING ; Zi-Hu TAN ; Qiong YANG
China Journal of Chinese Materia Medica 2025;50(16):4555-4563
This study aims to explore the effects and potential mechanisms of Modified Shuyu Pills in ameliorating depressive behaviors in the mouse model of vascular dementia(VaD). Seventy-two three-month-old male C57BL/6 mice were assigned into six groups: sham, model, low-, medium-, and high-dose Modified Shuyu Pills, and fluoxetine. The other five groups except the sham group underwent bilateral common carotid artery stenosis combined with chronic unpredictable stress. Depressive behaviors were assessed by the sucrose preference test and tail suspension test. Cerebral blood flow was measured by laser speckle imaging. Protein levels of low density lipoprotein receptor(LDLR), mitogen-activated protein kinase kinase(MEK), phosphorylated(p)-MEK, extracellular signal-regulated kinase(ERK), and p-ERK in the ventral tegmental area(VTA) and nucleus accumbens(NAc) were determined by Western blot. The fluorescence intensity of myelin basic protein(MBP) in the VTA and NAc were measured by immunofluorescence. Myelin sheath morphology in the VTA and NAc was observed by luxol fast blue staining, and the ultrastructure of myelin sheath in the VTA and NAc was examined by transmission electron microscopy. In the tail suspension test, the immobility time of the model group was longer than that of the sham group(P<0.01). In the sucrose preference test, the sucrose preference rate of the model group was lower than that of the sham group(P<0.01). After intervention with Modified Shuyu Pills, the immobility time in the tail suspension test was shortened(P<0.01), and the sucrose preference rate increased(P<0.01). Laser speckle imaging results showed that compared with the sham group, the model group showed reduced cerebral blood flow(P<0.01), and the reduction was reversed by medium-and high-dose Modified Shuyu Pills(P<0.01). Western blot results indicated that the relative expression levels of LDLR, p-MEK/MEK, and p-ERK/ERK in the VTA and NAc of the model group were lower than those in the sham group(P<0.01). Medium-and high-dose Modified Shuyu Pills reversed this trend(P<0.01). Immunofluorescence results showed that the fluorescence intensity of MBP in the VTA and NAc of the model group was lower than that of the sham group(P<0.01). The medium-and high-dose Modified Shuyu Pills groups showed increased fluorescence intensity of MBP in the VTA compared with the model group(P<0.01). In the NAc, the fluorescence intensity of MBP in all the groups of Modified Shuyu Pills increased to varying degrees compared with that in the model group(P<0.01). Luxol fast blue staining results showed that the model group presented lighter staining intensity and looser arrangement of myelin fibers than the sham group, indicating significant demyelination in the model group. However, after intervention with medium-and high-dose Modified Shuyu Pills, the staining intensity and myelin sheath structure in the VTA and NAc were improved. Transmission electron microscopy results revealed that the myelin sheath in the VTA and NAc of the sham group was intact and dense, while the model group exhibited extensive myelin loss, with myelin sheath degeneration and disintegration. After intervention with Modified Shuyu Pills, the myelin sheath loss in the VTA and NAc of mice was reduced, and the proportion of myelinated tissue increased. In summary, Modified Shuyu Pills may promote myelination via the VTA-NAc circuit by upregulating the LDLR/MEK/ERK signaling pathway, thereby ameliorating depressive-like behaviors in VaD mice.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Ventral Tegmental Area/metabolism*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Depression/genetics*
;
Receptors, LDL/genetics*
;
Dementia, Vascular/psychology*
;
MAP Kinase Signaling System/drug effects*
;
Nucleus Accumbens/metabolism*
;
Behavior, Animal/drug effects*
;
Humans
;
Myelin Sheath/drug effects*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
2.AATYK is a Novel Regulator of Oligodendrocyte Differentiation and Myelination.
Chunxia JIANG ; Wanqing YANG ; Zhihong FAN ; Peng TENG ; Ruyi MEI ; Junlin YANG ; Aifen YANG ; Mengsheng QIU ; Xiaofeng ZHAO
Neuroscience Bulletin 2018;34(3):527-533
Oligodendrocytes (OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK (apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYK-deficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.
Animals
;
Animals, Newborn
;
Apoptosis Regulatory Proteins
;
genetics
;
metabolism
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Proliferation
;
drug effects
;
genetics
;
Cells, Cultured
;
Cuprizone
;
toxicity
;
Demyelinating Diseases
;
chemically induced
;
metabolism
;
pathology
;
Embryo, Mammalian
;
Gene Expression Regulation, Developmental
;
genetics
;
Ki-67 Antigen
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Myelin Basic Protein
;
metabolism
;
Myelin Proteolipid Protein
;
metabolism
;
Myelin Sheath
;
drug effects
;
metabolism
;
Oligodendroglia
;
drug effects
;
metabolism
;
Protein-Tyrosine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
3.ROCK inhibition with fasudil promotes early functional recovery of spinal cord injury in rats by enhancing microglia phagocytosis.
Pei-cai FU ; Rong-hua TANG ; Yue WAN ; Min-jie XIE ; Wei WANG ; Xiang LUO ; Zhi-yuan YU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):31-36
Emerging evidence indicates that microglia activation plays an important role in spinal cord injury (SCI) caused by trauma. Studies have found that inhibiting the Rho/Rho-associated protein kinase (ROCK) signaling pathway can reduce inflammatory cytokine production by microglia. In this study, Western blotting was conducted to detect ROCK2 expression after the SCI; the ROCK Activity Assay kit was used for assay of ROCK pathway activity; microglia morphology was examined using the CD11b antibody; electron microscopy was used to detect microglia phagocytosis; TUNEL was used to detect tissue cell apoptosis; myelin staining was performed using an antibody against myelin basic protein (MBP); behavioral outcomes were evaluated according to the methods of Basso, Beattie, and Bresnahan (BBB). We observed an increase in ROCK activity and microglial activation after SCI. The microglia became larger and rounder and contained myelin-like substances. Furthermore, treatment with fasudil inhibited neuronal cells apoptosis, alleviated demyelination and the formation of cavities, and improved motor recovery. The experimental evidence reveals that the ROCK inhibitor fasudil can regulate microglial activation, promote cell phagocytosis, and improve the SCI microenvironment to promote SCI repair. Thus, fasudil may be useful for the treatment of SCI.
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Animals
;
Apoptosis
;
Male
;
Microglia
;
drug effects
;
metabolism
;
Myelin Basic Protein
;
metabolism
;
Myelin Sheath
;
metabolism
;
Phagocytosis
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord Injuries
;
drug therapy
;
rho-Associated Kinases
;
antagonists & inhibitors
;
metabolism
4.Effects of valproate acid on blood lipid, serum leptin and cerebral cortex in juvenile and adult rats.
Jing LI ; Dan LI ; Shao-Ping HUANG
Chinese Journal of Contemporary Pediatrics 2010;12(6):479-482
OBJECTIVETo study the effects of valproate acid (VPA) on serum lipid and leptin levels and cerebral cortex in juvenile and adult rats.
METHODSTwenty healthy juvenile female Sprague-Dawley (SD) rats (21-day-old) and twenty healthy adult female SD rats (2-month-old) were randomly divided into four groups (n=10 each): juvenile control, juvenile VPA, adult control and adult VPA. Juvenile and adult VPA groups were fed with VPA 200 mg/kg daily, while the two control groups were fed with normal saline. The body weights were recorded weekly. Six weeks after feeding, serum and brain samples were obtained. Serum lipid levels including total cholesterol (TC), triglycerides (TG) and lower density lipoprotein cholesterol (LDL-C) were determined. Serum leptin (LEP) levels were measured by radioimmunoassay (RIA). Myelin staining and Nissl staining were used to evaluate the changes of brain tissues.
RESULTSThe weight and serum LEP and lipid levels in both juvenile and adult VPA groups increased significantly compared with those in the control groups (P<0.05). The juvenile VPA group had more increased serum LEP and lipid levels than the adult VPA group (P<0.05). The Myelin staining showed that the average fiber density in the VPA groups was significantly lower than that in the control groups (P<0.05). The Nissl staining showed that the number of toluidine blue staining neurons in the VPA groups was not statistically different from the control groups.
CONCLUSIONSVPA may increase serum LEP and lipid levels in both juvenile and adult rats, and more increased levels may be found in juvenile rats. Long-term VPA treatment may have an adverse effect on brain myelination, but no effect on neurons.
Animals ; Anticonvulsants ; toxicity ; Body Weight ; drug effects ; Cerebral Cortex ; drug effects ; pathology ; Female ; Leptin ; blood ; Lipids ; blood ; Myelin Sheath ; drug effects ; pathology ; Rats ; Rats, Sprague-Dawley ; Valproic Acid ; toxicity
5.Acellular nerve allograft by chemical extraction in humans.
Hong-bin ZHONG ; Shi-bi LU ; Shu-xun HOU ; Qing ZHAO
Chinese Journal of Surgery 2003;41(1):60-63
OBJECTIVETo develop a procedure by which Schwann cells and myelin in the peripheral nerve could be removed while the basal lamina tubes remained intact, and to obtain a thick and long acellular nerve allograft in humans.
METHODSFour ulnar nerves 10.0 cm long and 4.0 - 5.0 mm in diameter were excised from a donated male body and cleaned from external debris. The nerves were treated with a solution of Triton X-100 and a solution of sodium deoxycholate at room temperature. After a final wash in water, the nerves were stored in phosphate-buffered saline (PBS, pH 7.2) at 4 degrees C. HE, luxol fast blue and fibrin staining were performed to visualize cells, myelin and basal membranes respectively and immunohistochemical staining was performed to visualize the presence of laminin, a Schwann cell lamina component, both in fresh and acellular nerve segments. To reveal overall structure better, methylene blue-fuchsin staining was performed in semithin section. The ultrastructure of acellular and fresh nerves were observed and photographed in a transmission electron microscope.
RESULTSThe acellular human ulnar nerve was white long cylinder with well elasticity and ductility. HE, myelin and fibrin staining revealed that cells, axons and myelin sheath were removed and basal membrane was preserved after extraction procedure. Staining for the presence of laminin showed that the Schwann cell basal lamina component were present in the nerves after chemical treatment. Methylene blue-fuchsin staining and transmission electron microscopy showed that the myelin sheaths were absent in the extracted nerve segments and empty basal lamina tubes remained in the endoneurium.
CONCLUSIONSWe developed an extracted procedure with the detergents of Triton X-100 and deoxycholate, by which cells, axons and myelin sheaths could be removed from a human ulnar nerve while the basal lamina tubes remain intact and a thick long acellular nerve allograft is obtained. The laminin, a Schwann cell basal lamina component, can be preserved in the acellular nerve.
Adult ; Axons ; drug effects ; Cell Separation ; methods ; Deoxycholic Acid ; pharmacology ; Humans ; Male ; Myelin Sheath ; drug effects ; Octoxynol ; pharmacology ; Transplantation, Homologous ; Ulnar Nerve ; cytology ; transplantation ; ultrastructure
6.Aconite induced myelo-optic neuropathy in a rabbit model.
Kui Duk SUK ; Kyung Cheol YOON ; Jae Pil SHIN ; Sang Ha KIM
Korean Journal of Ophthalmology 1994;8(2):77-82
Aconite is a common remedy of herb doctors and is widely used in the Far East. Clinical aspects of the visual disturbance produced by this drug have been described, but little is known about its pathology. Tinctura aconiti (0.6 mg of total alkaloid/kg 2x) was administered intraperitoneally in rabbits to evaluate its toxic effects on the visual system. The alteration in the visual evoked potential following aconite injection consisted of a delay in the onset and peak latency. Histopathologically, there were damages to the myelin sheath of the visual pathway, spinal cord and peripheral nerves. These findings suggest that aconite may cause primarily myelo-optic neuropathy.
Aconitum/administration & dosage/*toxicity
;
Animals
;
Evoked Potentials, Visual/*drug effects
;
Injections, Intraperitoneal
;
Myelin Sheath/*drug effects/ultrastructure
;
Optic Nerve/*drug effects/ultrastructure
;
Optic Nerve Diseases/*chemically induced/pathology
;
Rabbits
;
Spinal Cord/*drug effects/ultrastructure

Result Analysis
Print
Save
E-mail