1.Circadian rhythm disturbances and neurodevelopmental disorders.
Deng-Feng LIU ; Yi-Chun ZHANG ; Jia-Da LI
Acta Physiologica Sinica 2025;77(4):678-688
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and intellectual developmental disorder (IDD), are highly prevalent and lack effective treatments, posing significant health challenges. These disorders are frequently comorbid with disruptions in sleep rhythms, and sleep-related indicators are often used to assess disease severity and treatment efficacy. Recent evidence has highlighted the crucial roles of circadian rhythm disturbances and circadian clock gene mutations in the pathogenesis of NDDs. This review focuses on the mechanisms by which circadian rhythm disruptions and circadian clock gene mutations contribute to cognitive, behavioral, and emotional disorders associated with NDDs, particularly through the dysregulation of dopamine system. Additionally, we discussed the potential of targeting the circadian system as novel therapeutic strategies for the treatment of NDDs.
Humans
;
Neurodevelopmental Disorders/genetics*
;
Attention Deficit Disorder with Hyperactivity/genetics*
;
Circadian Rhythm/genetics*
;
Autism Spectrum Disorder/genetics*
;
Mutation
;
Intellectual Disability/genetics*
;
Circadian Clocks/physiology*
;
Dopamine/metabolism*
2.Mechanisms of ribosomopathy and phase separation-related ribosomopathy.
Zhiyuan PAN ; Guofen LIN ; Hao LIU ; Guozhi LI ; Xiaoyi ZHANG ; Jiewen DAI
Journal of Zhejiang University. Science. B 2025;26(6):503-526
Ribosome is an intracellular ribonucleoprotein particle that serves as the site of protein biosynthesis. Ribosomal dysfunction caused by mutations in genes encoding ribosomal proteins (RPs) and ribosome biogenesis factors (RBFs) can lead to a spectrum of diseases, collectively known as ribosomopathy. Phase separation is a thermodynamic process that produces multiple phases from a homogeneous mixture. The formation of membraneless organelles and intracellular structures, including ribosomes and nucleoli, cannot occur without the involvement of phase separation. Here, ribosome structure, biogenesis, and their relationship with ribosomopathy are systematically reviewed. The tissue specificity of ribosomopathy and the role of phase separation in ribosomopathy are particularly discussed, which may offer some clues for understanding the mechanisms of ribosomopathy. Then, some new ideas for the prevention, diagnosis, and treatment of ribosomopathy are provided.
Humans
;
Ribosomes/physiology*
;
Ribosomal Proteins/metabolism*
;
Mutation
;
Animals
;
Cell Nucleolus/metabolism*
;
Protein Biosynthesis
;
Phase Separation
3.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
4.Human Cortical Organoids with a Novel SCN2A Variant Exhibit Hyperexcitability and Differential Responses to Anti-Seizure Compounds.
Yuling YANG ; Yang CAI ; Shuyang WANG ; Xiaoling WU ; Zhicheng SHAO ; Xin WANG ; Jing DING
Neuroscience Bulletin 2025;41(11):2010-2024
Mutations in ion channel genes have long been implicated in a spectrum of epilepsy syndromes. However, therapeutic decision-making is relatively complex for epilepsies associated with channelopathy. Therefore, in the present study, we used a patient-derived organoid model with a novel SCN2A mutation (p.E512K) to investigate the potential of utilizing such a model as a platform for preclinical testing of anti-seizure compounds. The electrophysiological properties of the variant Nav1.2 exhibited gain-of-function effects with increased current amplitude and premature activation. Immunofluorescence staining of patient-derived cortical organoids (COs) displayed normal neurodevelopment. Multielectrode array (MEA) recordings of patient-derived COs showed hyperexcitability with increased spiking and remarkable network bursts. Moreover, the application of patient-derived COs for preclinical drug testing using the MEA showed that they exhibit differential responses to various anti-seizure drugs and respond well to carbamazepine. Our results demonstrate that the individualized organoids have the potential to serve as a platform for preclinical pharmacological assessment.
Organoids/physiology*
;
NAV1.2 Voltage-Gated Sodium Channel/genetics*
;
Humans
;
Anticonvulsants/pharmacology*
;
Epilepsy/drug therapy*
;
Mutation
;
Cerebral Cortex/drug effects*
;
Action Potentials/drug effects*
;
Carbamazepine/pharmacology*
5.Creation of new glabrous and salt-tolerant rice germplasm along the Yellow River by CRISPR-Cas9-mediated editing of OsSPL10.
Qiangbing XUAN ; Huigang ZHOU ; Minglan ZHU ; Junjie WANG ; Weihong LIANG
Chinese Journal of Biotechnology 2025;41(2):706-718
The OsSPL10 gene has previously been reported to positively regulate trichome development and negatively regulate salt and drought stress tolerance in rice. However, it is not clear whether this gene can be used for gene editing to create new germplasm of glabrous leaf and salt-tolerant rice. In this study, we created six rice mutants by CRISPR/Cas9-mediated editing of OsSPL10 from 'Xinfeng 2', 'Xinkedao 31', and 'Xindao 25', the main rice cultivars along the Yellow River. Visual observation and scanning electron microscopy verified that the mutants lacked trichomes on the leaves and glumes, and the expression of glabrous marker genes OsHL6, OsGL6, and OsWOX3B in mutants was down-regulated compared with that in the wild type. The net photosynthetic rate, stomatal conductance, and transpiration rate of flag leaves in the mutants were significantly higher than those in the wild type. In addition, the survival rates of the mutants were much higher than that of the wild type after 7 days of treatment with 200 mmol/L NaCl. The results of quantitative real-time polymerase chain reaction (qRT-PCR) further verified that compared with the wild type, the mutants demonstrated down-regulated expression of the salt stress-related gene OsGASR1 and up-regulated expression of OsNHX2 and OsIDS1. Statistical analysis of agronomic traits showed that the mutants had increased plant height and no significant changes in yield-related traits compared with the wild type. The six spl10 mutants created in this study not only had glabrous leaves and glumes but also demonstrated enhanced tolerance to salt stress, serving as new germplasm resources for directional breeding of rice along the Yellow River.
Oryza/physiology*
;
CRISPR-Cas Systems/genetics*
;
Salt Tolerance/genetics*
;
Gene Editing/methods*
;
Plant Proteins/genetics*
;
Rivers
;
Plant Leaves/genetics*
;
Mutation
;
Plants, Genetically Modified/genetics*
;
China
6.Multimodal ultrasound assessment of myocardial perfusion and contractile function in patients with hypertrophic cardiomyopathy and their first-degree relatives.
Li YU ; Shi ZENG ; Qichang ZHOU ; Zurong YANG ; Yiyuan HUANG
Journal of Central South University(Medical Sciences) 2024;49(12):1934-1940
OBJECTIVES:
Hypertrophic cardiomyopathy (HCM) frequently leads to myocardial ischemia and cardiac dysfunction. Even genotype-positive/phenotype-negative (G+/P-) individuals, carriers of pathogenic sarcomere gene mutations without left ventricular hypertrophy, remain at risk of progression to clinical HCM. This study aims to evaluate myocardial perfusion and contractile function in familial HCM patients and their first-degree relatives using myocardial contrast echocardiography (MCE) and velocity vector imaging (VVI), in order to identify early myocardial dysfunction and at-risk individuals within families.
METHODS:
Thirty-five genetically confirmed HCM patients with left ventricular hypertrophy were assigned to a G+/P+ group. A total of 30 first-degree relatives carrying sarcomere mutations but without echocardiographic evidence of left ventricular hypertrophy were assigned to a G+/P- group. A total of 38 age- and sex-matched gene-negative healthy family members served as controls. All participants underwent MCE and VVI assessments. Myocardial perfusion parameters, including peak intensity (PI), time to peak concentration (TP), and the ratio of declining intensity and declining time (dI/dT), as well as strain parameters including global longitudinal strain (GLS), global radial strain (GRS), and global circumferential strain (GCS) were recorded and analyzed for differences and correlations.
RESULTS:
Compared to both the G+/P- and normal control groups, the G+/P+ group had significantly lower PI, dI/dT, GLS, and GRS, along with significantly increased TP (all P<0.05). GLS and GRS were positively correlated with PI (r=0.629 and r=0.613, respectively; both P<0.01) and negatively correlated with TP (r=-0.597 and r=-0.571, respectively; both P<0.01). Compared to the normal control group, the G+/P- group showed a significant reduction in GLS (P<0.05), but no significant differences in GRS, GCS, PI, TP, or dI/dT (all P>0.05).
CONCLUSIONS
Myocardial contractile dysfunction in HCM patients is closely related to impaired perfusion. Even in the absence of wall hypertrophy, sarcomere mutation carriers show early signs of subclinical left ventricular dysfunction. MCE and VVI can quantitatively assess myocardial perfusion and function, offering valuable tools for early detection and risk stratification in HCM patients and their relatives.
Humans
;
Male
;
Female
;
Myocardial Contraction/physiology*
;
Echocardiography/methods*
;
Adult
;
Cardiomyopathy, Hypertrophic/genetics*
;
Middle Aged
;
Cardiomyopathy, Hypertrophic, Familial/genetics*
;
Family
;
Mutation
7.Research progress on structure, function and disease correlation of solute carrier family 4.
Jing DONG ; Jing-Wen ZHONG ; Ya-Li XU ; Yu MA ; Xiao-Hong DUAN
Acta Physiologica Sinica 2023;75(1):137-150
The solute carrier family 4 (SLC4) includes 10 members (SLC4A1-5, SLC4A7-11), which are expressed in multiple tissues in the human body. The SLC4 family members differ in their substrate dependence, charge transport stoichiometry and tissue expression. Their common function is responsible for the transmembrane exchange of multiple ions, which is involved in many important physiological processes, such as erythrocyte CO2 transport and the regulation of cell volume and intracellular pH. In recent years, many studies have focused on the role of SLC4 family members in the occurrence of human diseases. When SLC4 family members have gene mutations, a series of functional disorders will occur in the body, leading to the occurrence of some diseases. This review summarizes the recent progress about the structures, functions and disease correlation of SLC4 members, in order to provide clues for the prevention and treatment of related human diseases.
Humans
;
Mutation
;
SLC4A Proteins/physiology*
8.Chinese Medicine in Fighting against Covid-19: Role and Inspiration.
Chinese journal of integrative medicine 2021;27(1):3-6
Covid-19 pandemic has caused hundreds of thousands deaths and millions of infections and continued spreading violently. Although researchers are racing to find or develop effective drugs or vaccines, no drugs from modern medical system have been proven effective and the high mutant rates of the virus may lead it resistant to whatever drugs or vaccines developed following modern drug development procedure. Current evidence has demonstrated impressive healing effects of several Chinese medicines (CMs) for Covid-19, which urges us to reflect on the role of CM in the era of modern medicine. Undoubtedly, CM could be promising resources for developing drug candidates for the treatment of Covid-19 in a way similar to the development of artemisinin. But the theory that builds CM, like the emphasis of driving away exogenous pathogen (virus, etc.) by restoring self-healing capacity rather than killing the pathogen directly from the inside and the 'black-box' mode of diagnosing and treating patients, is as important, yet often ignored, an treasure as CM herbs and should be incorporated into modern medicine for future advancement and innovation of medical science.
Antiviral Agents/therapeutic use*
;
COVID-19/therapy*
;
Disease Outbreaks
;
Drug Development/standards*
;
Drug Resistance, Viral/genetics*
;
Drug Therapy, Combination
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional/trends*
;
Mutation Rate
;
Pandemics
;
Phytotherapy/methods*
;
SARS-CoV-2/physiology*
9.Novel biallelic loss-of-function mutations in
Ihsan KHAN ; Basit SHAH ; Sobia DIL ; Nadeem ULLAH ; Jian-Teng ZHOU ; Da-Ren ZHAO ; Yuan-Wei ZHANG ; Xiao-Hua JIANG ; Ranjha KHAN ; Asad KHAN ; Haider ALI ; Muhammad ZUBAIR ; Wasim SHAH ; Huan ZHANG ; Qing-Hua SHI
Asian Journal of Andrology 2021;23(6):627-632
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific type of asthenoteratozoospermia, presenting with multiple morphological anomalies in spermatozoa, such as absent, bent, coiled, short, or irregular caliber flagella. Previous genetic studies revealed pathogenic mutations in genes encoding cilia and flagella-associated proteins (CFAPs; e.g., CFAP43, CFAP44, CFAP65, CFAP69, CFAP70, and CFAP251) responsible for the MMAF phenotype in infertile men from different ethnic groups. However, none of them have been identified in infertile Pakistani males with MMAF. In the current study, two Pakistani families with MMAF patients were recruited. Whole-exome sequencing (WES) of patients and their parents was performed. WES analysis reflected novel biallelic loss-of-function mutations in CFAP43 in both families (Family 1: ENST00000357060.3, p.Arg300Lysfs*22 and p.Thr526Serfs*43 in a compound heterozygous state; Family 2: ENST00000357060.3, p.Thr526Serfs*43 in a homozygous state). Sanger sequencing further confirmed that these mutations were segregated recessively in the families with the MMAF phenotype. Semiquantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was carried out to detect the effect of the mutation on mRNA of the affected gene. Previous research demonstrated that biallelic loss-of-function mutations in CFAP43 accounted for the majority of all CFAP43-mutant MMAF patients. To the best of our knowledge, this is the first study to report CFAP43 biallelic loss-of-function mutations in a Pakistani population with the MMAF phenotype. This study will help researchers and clinicians to understand the genetic etiology of MMAF better.
Adolescent
;
Adult
;
Humans
;
Infertility, Male/epidemiology*
;
Loss of Function Mutation/genetics*
;
Male
;
Microtubule Proteins/genetics*
;
Middle Aged
;
Pakistan/epidemiology*
;
Sperm Tail/physiology*
10.Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice.
Jinliang WANG ; Lei SHUAI ; Chong WANG ; Renqiang LIU ; Xijun HE ; Xianfeng ZHANG ; Ziruo SUN ; Dan SHAN ; Jinying GE ; Xijun WANG ; Ronghong HUA ; Gongxun ZHONG ; Zhiyuan WEN ; Zhigao BU
Protein & Cell 2020;11(10):776-782
Adaptation, Physiological
;
Adenosine Monophosphate
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Administration, Intranasal
;
Alanine
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Animals
;
Betacoronavirus
;
genetics
;
physiology
;
Chlorocebus aethiops
;
Coronavirus Infections
;
drug therapy
;
virology
;
Disease Models, Animal
;
Female
;
Host Specificity
;
genetics
;
Lung
;
pathology
;
virology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Mutation, Missense
;
Nasal Mucosa
;
virology
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
virology
;
RNA, Viral
;
administration & dosage
;
genetics
;
Turbinates
;
virology
;
Vero Cells
;
Viral Load
;
Virus Replication

Result Analysis
Print
Save
E-mail