1.Effects of a homozygous missense mutation in the GNE gene p.V543M on cell phenotype and its mechanisms.
Ruolan WU ; Huilong LI ; Pingyun WU ; Qi YANG ; Xueting WAN ; Yuan WU
Journal of Central South University(Medical Sciences) 2025;50(1):105-118
OBJECTIVES:
Uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy is a progressive neurodegenerative disease associated with homozygous or compound heterozygous missense mutations in the GNE gene. This study aims to explore the impact of the homozygous p.V543M mutation in on cell phenotype and to gain preliminary insights into the underlying mechanisms.
METHODS:
Human embryonic kidney 293T (HEK 293T) cells were used to construct wild-type (WT-GNE) and mutant (MUT-GNE) GNE overexpression models. Western blotting and immunofluorescence were used to assess GNE protein expression levels and subcellular localization. Cell adhesion, proliferation, apoptosis, and mitochondrial membrane potential were evaluated using the cell counting kit-8 (CCK-8) assay, crystal violet staining, flow cytometry, Hoechst 33342/propidium iodide (PI) staining, and tetramethylrhodamine ethyl ester (TMRE) staining. Sialic acid synthesis levels and GNE enzymatic activity were measured, and the mRNA expression of sialic acid biosynthesis-related enzymes was quantified by real-time PCR.
RESULTS:
Western blotting confirmed successful establishment of GNE overexpression models. Immunofluorescence showed significantly reduced co-localization of GNE protein with Golgin-97 in the MUT-GNE group compared to WT-GNE (Pearson's correlation coefficient: 0.65±0.08 vs 0.83±0.06, P<0.05). Compared with WT-GNE, cells in the MUT-GNE group exhibited increased adhesion, decreased proliferation, and reduced mitochondrial membrane potential (P<0.05). No significant differences in apoptosis were observed between groups. The MUT-GNE group showed reduced sialic acid production, significantly decreased kinase activity, and downregulated transcription of sialic acid biosynthesis-related enzymes compared to WT-GNE (P<0.001).
CONCLUSIONS
The p.V543M mutation in the GNE gene alters cellular phenotype by reducing GNE enzymatic activity and the transcription of sialic acid biosynthesis enzymes, ultimately impairing sialic acid production.
Humans
;
Mutation, Missense
;
HEK293 Cells
;
Apoptosis/genetics*
;
Phenotype
;
Multienzyme Complexes/metabolism*
;
Cell Proliferation
;
Homozygote
;
Cell Adhesion/genetics*
;
Distal Myopathies/genetics*
2.Genetic analysis of UMOD gene mutation in autosomal dominant tubulointerstitial kidney disease.
Yingying ZHANG ; Nannan LI ; Min LU ; Yumeng LEI ; Kaiqian ZHANG ; Jishi LIU
Journal of Central South University(Medical Sciences) 2025;50(4):724-730
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare autosomal dominant hereditary disorder characterized by hyperuricemia, gout, impaired urinary concentration, and progressive renal failure. It is primarily caused by mutations in uromodulin (UMOD) gene. This study reports a family with ADTKD in which whole-exome sequencing and Sanger sequencing identified a missense mutation in the UMOD gene, c.761A>C (p.H254P), present in both the proband and affected relatives. According to American College of Medical Genetics and Genomics (ACMG) guidelines, this variant is classified as likely pathogenic. The mutation results in an amino acid substitution that may impair UMOD protein folding and intracellular trafficking. UMOD gene mutations are associated with ADTKD, and genetic testing plays a vital role in the early diagnosis and treatment of this condition, highlighting its importance in the diagnosis of rare kidney diseases.
Adult
;
Humans
;
Male
;
Exome Sequencing
;
Mutation
;
Mutation, Missense
;
Nephritis, Interstitial/genetics*
;
Pedigree
;
Uromodulin/genetics*
3.Five novel ZNF469 gene mutations in sporadic keratoconus patients in the Han Chinese population.
Yanna CAO ; Zhihong DENG ; Guiyun HE ; Li XIAO ; Feng ZHANG ; Feng SU
Journal of Central South University(Medical Sciences) 2025;50(6):931-939
OBJECTIVES:
Keratoconus (KC) is a progressive corneal ectasia disorder, arising from a myriad of causes including genetic predispositions, environmental factors, biomechanical influences, and inflammatory reactions. This study aims to identify potential pathogenetic gene mutations in patients with sporadic KC in the Han Chinese population.
METHODS:
Twenty-five patients with primary KC as well as 50 unrelated population-matched healthy controls, were included in this study to identify potential pathogenic gene mutations among sporadic KC patients in the Han Chinese population. Sanger sequencing and whole-exome sequencing (WES) were used to analyze mutations in the zinc finger protein 469 (ZNF469) gene. Bioinformatics analysis was conducted to explore the potential role of ZNF469 in KC pathogenesis.
RESULTS:
Five novel heterozygous missense variants were identified in KC patients. Among them, 2 compound heterozygous variants, c.8986G>C (p. E2996Q) with c.11765A>C (p. D3922A), and c.4423C>G (p. L1475V) with c.10633G>A (p. G3545R), were determined to be possible pathogenic factors for KC.
CONCLUSIONS
Mutations in the ZNF469 gene may contribute to the development of KC in the Han Chinese population. These mutation sites may provide valuable information for future genetic screening of KC patients and their families.
Adolescent
;
Adult
;
Female
;
Humans
;
Male
;
Case-Control Studies
;
China/ethnology*
;
Exome Sequencing
;
Genetic Predisposition to Disease
;
Keratoconus/genetics*
;
Mutation
;
Mutation, Missense
;
Transcription Factors/genetics*
;
East Asian People/genetics*
4.Electrophysiological Abnormalities and Pharmacological Corrections of Pathogenic Missense Variants in KCNQ3.
Xiaorong WU ; Jili GONG ; Li QIU ; Guimei YANG ; Hui YUAN ; Xiangchun SHEN ; Yanwen SHEN ; Fuyun TIAN ; Zhaobing GAO
Neuroscience Bulletin 2025;41(9):1511-1521
The KCNQ potassium channels play a crucial role in modulating neural excitability, and their dysfunction is closely associated with epileptic disorders. While variants in KCNQ2 have been extensively studied, KCNQ3-related disorders have rarely been reported. With advances in next-generation sequencing technologies, an increasing number of cases of KCNQ3-related disorders have been identified. However, the correlation between genotype and phenotype remains poorly understood. In this study, we established a variant library consisting of 24 missense mutations in KCNQ3 and introduced these mutations into three different template types: KCNQ3, KCNQ3-A315T (Q3*), and KCNQ3-KCNQ2 tandem (Q3-Q2). We then analyzed the effects of these mutations on the KCNQ3 channel function using patch-clamp recording. The most informative parameter across all three backgrounds was the current density of the mutant channels. The current density patterns in the Q3* and Q3-Q2 backgrounds were similar, with most mutations resulting in an almost complete loss of function (LOF), they were concentrated in the pore-forming domain of KCNQ3. In contrast, mutations in the voltage-sensing domain or C-terminus did not show significant differences from the wild-type channel. Interestingly, these LOF mutations were typically associated with self-limited familial neonatal epilepsy, while neurodevelopmental disorders (NDD) were more closely associated with mutations that did not significantly differ from the wild-type. V1/2, another important parameter of the electrophysiological properties, could not be accurately determined in the majority of KCNQ3 mutations due to its nearly complete LOF in the Q3* and Q3-Q2 backgrounds. Intriguingly, the V1/2 of functional mutations were primarily leftward shifted, indicating a gain-of-function (GOF) effect, which was typically associated with NDD. In addition to previously reported mutations, we identified G553R as a novel GOF mutation. In the co-transfection background, parameters such as V1/2 could be determined, but the dysfunctional effects of these mutations were mitigated by the co-expression of wild-type KCNQ3 and KCNQ2 subunits, resulting in no significant differences between most mutations and the wild-type channel. Furthermore, we applied KCNQ modulators to reverse the electrophysiological abnormalities caused by KCNQ3 variants. The LOF mutations were reversed by the application of Pynegabine (HN37), a KCNQ opener, while the GOF mutation responded well to Amitriptyline (AMI), a KCNQ inhibitor. These findings provide essential insights into the pathogenic mechanisms underlying KCNQ3-related disorders and may inform clinical decision-making.
KCNQ3 Potassium Channel/genetics*
;
Humans
;
Mutation, Missense/genetics*
;
KCNQ2 Potassium Channel/genetics*
;
Patch-Clamp Techniques
;
HEK293 Cells
;
Animals
;
Phenylenediamines/pharmacology*
;
Carbamates
5.A case report of Muenke syndrome with soft cleft palate and literature review.
Jialin SUN ; Yiru WANG ; Bing SHI ; Zhonglin JIA
West China Journal of Stomatology 2025;43(2):275-279
Muenke syndrome is an autosomal dominant genetic disorder that is typically characterized by unilateral or bilateral coronal synostosis, macrocephaly, midface hypoplasia, and developmental delays. This article reports a case of Muenke syndrome with a soft cleft palate. A heterozygous missense mutation c.749C>G (p.P250A) was identified in the FGFR3 gene through genetic testing. The patient exhibited typical features including coronal synostosis, bilateral hearing loss, right accessory auricle, and developmental delays and underwent surgery to repair the soft cleft palate. Cases of Muenke syndrome with cleft palate in the literature are relatively rare, and common associated symptoms include coronal suture craniosynostosis and hearing impairment. This article reports a differential diagnosis with other craniosynostosis syndromes and provides a reference for clinical diagnosis and treatment.
Humans
;
Cleft Palate/surgery*
;
Craniosynostoses/diagnosis*
;
Mutation, Missense
;
Palate, Soft/abnormalities*
;
Receptor, Fibroblast Growth Factor, Type 3/genetics*
6.Effects of Gly mutations N-terminal to the integrin-binding sequence on the structure and function of recombinant collagen.
Fei LI ; Yuxi HOU ; Ben RAO ; Xiaoyan LIU ; Yaping WANG ; Yimin QIU
Chinese Journal of Biotechnology 2025;41(4):1573-1587
Collagen, a vital matrix protein for various tissue and functions in animals, is widely applied in biomaterials. In type Ⅰ collagen, missense mutations of glycine (Gly) in the Gly-Xaa-Yaa triplet of the triple helix are a major cause of osteogenesis imperfecta (OI). Clinical manifestations exhibit marked heterogeneity, spanning a broad disease spectrum from mild skeletal fragility (Type Ⅰ) to severe limb deformities (Type Ⅲ) and perinatal lethal forms (Type Ⅱ). This study utilized recombinant collagen as a model to further elucidate whether Gly→Ala/Val mutations at the N-terminus of the integrin-binding sequence GFPGER affect collagen structure and function, and to explore the underlying mechanisms by which missense mutations impact the biological function of collagen. By introducing Ala and Val substitutions at seven Gly positions N-terminal to the GFPGER sequence, we systematically assessed the effects of these amino acid replacements on the triple-helical structure, thermal stability, integrin-binding ability, and cell adhesion of recombinant collagen. All constructs formed a stable triple-helix structure, with slightly compromised thermal stability. Gly→Val substitutions increased the susceptibility of recombinant collagen to trypsin, which suggested local conformational perturbations in the triple helix. In addition, Gly→Val substitutions significantly reduced the integrin-binding affinity and decreased HT1080 cell adhesion, with the effects stronger than Gly→Ala substitutions. Compared with Gly→Ala substitutions, substitution of Gly with the larger residue Val had enhanced negative effects on the structure and function of recombinant collagen. These findings provide new insights into the molecular mechanisms of osteogenesis imperfecta and offer theoretical references and experimental foundations for the design of collagen sequences and the development of collagen-based biomaterials.
Recombinant Proteins/biosynthesis*
;
Glycine/genetics*
;
Humans
;
Osteogenesis Imperfecta/genetics*
;
Integrins/metabolism*
;
Collagen/metabolism*
;
Collagen Type I/metabolism*
;
Amino Acid Substitution
;
Mutation
;
Mutation, Missense
7.A novel missense mutation of CCDC34 causes male infertility with oligoasthenoteratozoospermia in a consanguineous Pakistani family.
Nisar AHMAD ; Meng-Lei YANG ; Aurang ZEB ; Jian-Teng ZHOU ; Muhammad ZUBAIR ; Tanveer ABBAS ; Xiao-Hua JIANG ; Yuan-Wei ZHANG ; Huan ZHANG ; Wasim SHAH ; Qing-Hua SHI
Asian Journal of Andrology 2024;26(6):605-609
Male infertility is a worldwide health issue, affecting 8%-12% of the global population. Oligoasthenoteratozoospermia (OAT) represents a severe type of male infertility, characterized by reduced sperm count and motility and an increased frequency of sperm with aberrant morphology. Using whole-exome sequencing, this study identified a novel missense mutation (c.848C>A, p.A283E) in the coiled-coil domain-containing 34 gene (CCDC34) in a consanguineous Pakistani family. This rare mutation was predicted to be deleterious and to affect the protein stability. Hematoxylin and eosin staining of spermatozoa from the patient with OAT revealed multiple morphological abnormalities of the flagella and transmission electron microscopy indicated axonemal ultrastructural defects with a lack of outer dynein arms. These findings indicated that CCDC34 plays a role in maintaining the axonemal ultrastructure and the assembly or stability of the outer dynein arms, thus expanding the phenotypic spectrum of CCDC34 missense mutations.
Humans
;
Male
;
Mutation, Missense/genetics*
;
Pakistan
;
Consanguinity
;
Asthenozoospermia/genetics*
;
Pedigree
;
Infertility, Male/genetics*
;
Adult
;
Oligospermia/genetics*
;
Exome Sequencing
;
Axoneme/ultrastructure*
;
Spermatozoa/ultrastructure*
8.Clinical characteristics and genetic analysis of a child with specific type of diabetes mellitus caused by missense mutation of GATA6 gene.
Lingwen YING ; Yu DING ; Juan LI ; Qianwen ZHANG ; Guoying CHANG ; Tingting YU ; Jian WANG ; Zhongqun ZHU ; Xiumin WANG
Journal of Zhejiang University. Medical sciences 2023;52(6):732-737
A 2-year-old boy was admitted to Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine in Nov 30th, 2018, due to polydipsia, polyphagia, polyuria accompanied with increased glucose levels for more than 2 weeks. He presented with symmetrical short stature [height 81 cm (-2.2 SD), weight 9.8 kg (-2.1 SD), body mass index 14.94 kg/m2 (P10-P15)], and with no special facial or physical features. Laboratory results showed that the glycated hemoglobin A1c was 14%, the fasting C-peptide was 0.3 ng/mL, and the islet autoantibodies were all negative. Oral glucose tolerance test showed significant increases in both fasting and postprandial glucose, but partial islet functions remained (post-load C-peptide increased 1.43 times compared to baseline). A heterozygous variant c.1366C>T (p.R456C) was detected in GATA6 gene, thereby the boy was diagnosed with a specific type of diabetes mellitus. The boy had congenital heart disease and suffered from transient hyperosmolar hyperglycemia after a patent ductus arteriosus surgery at 11 months of age. Insulin replacement therapy was prescribed, but without regular follow-up thereafter. The latest follow-up was about 3.5 years after the diagnosis of diabetes when the child was 5 years and 11 months old, with the fasting blood glucose of 6.0-10.0 mmol/L, and the 2 h postprandial glucose of 17.0-20.0 mmol/L.
Male
;
Child
;
Humans
;
Child, Preschool
;
Infant
;
Diabetes Mellitus, Type 2/complications*
;
Mutation, Missense
;
C-Peptide/genetics*
;
China
;
Insulin/genetics*
;
Glucose
;
Blood Glucose
;
GATA6 Transcription Factor/genetics*
9.Analysis of F12 gene variants and molecular mechanisms in patients with coagulation factor Ⅻ deficiency.
Shuai FANG ; Jia YANG ; Xialin ZHANG ; Linhua YANG ; Gang WANG
Chinese Journal of Medical Genetics 2023;40(4):429-434
OBJECTIVE:
To analyze the sequence of the F12 gene and molecular mechanism for 20 patients with coagulation factor Ⅻ (FⅫ) deficiency.
METHODS:
The patients were selected from the outpatient department of the Second Hospital of Shanxi Medical University from July 2020 to January 2022. The activity of coagulation factor Ⅷ (FⅧ:C), factor Ⅸ (FⅨ:C), factor Ⅺ (FⅪ:C) and factor Ⅻ (FⅫ:C) were determined by using a one-stage clotting assay. All exons and 5' and 3' UTR of the F12 gene were analyzed by Sanger sequencing to detect the potential variants. Bioinformatic software was used to predict the pathogenicity of the variants, conservation of amino acids, and protein models.
RESULTS:
The FⅫ:C of the 20 patients has ranged from 0.07% to 20.10%, which was far below the reference values, whilst the other coagulation indexes were all normal. Sanger sequencing has identified genetic variants in 10 patients, including 4 with missense variants [c.820C>T (p.Arg274Cys), c.1561G>A (p.Glu521Lys), c.181T>C (p.Cys61Arg) and c.566.G>C (p.Cys189Ser)], 4 deletional variants c.303_304delCA(p.His101GlnfsX36), 1 insertional variant c.1093_1094insC (p.Lys365GlnfsX69) and 1 nonsense variant c.1763C>A (p.Ser588*). The remaining 10 patients only harbored the 46C/T variant. The heterozygous c.820C>T(p.Arg274Cys) missense variant in patient 1 and the homozygous c.1763C>A (p.Ser588*) nonsense variant in patient 2 were not included in the ClinVar and the Human Gene Mutation Database. Bioinformatic analysis predicted that both variants were pathogenic, and the corresponding amino acids are highly conserved. The protein prediction models suggested that the c.820C>T (p.Arg274Cys) variant may affect the stability of the secondary structure of FⅫ protein by disrupting the original hydrogen bonding force and truncating the side chain, leading to changes in the vital domain. c.1763C>A (p.Ser588*) may produce a truncated C-terminus which may alter the spatial conformation of the protein domain and affect the serine protease cleavage site, resulting in extremely reduced FⅫ:C.
CONCLUSION
Among individuals with low low FⅫ:C detected by one-stage clotting assay, 50% have harbored variants of the F12 gene, among which the c.820C>T and c.1763C>A were novel variants underlying the reduced coagulating factor FⅫ.
Humans
;
Factor XII/genetics*
;
Pedigree
;
Mutation
;
Mutation, Missense
;
Heterozygote
;
Factor XII Deficiency/genetics*

Result Analysis
Print
Save
E-mail