1.Mechanism of acupuncture for chronic blunt injury of lumbar muscle based on IGF-1/PI3K/AKT pathway.
Qun CHEN ; Dongmei WANG ; Zhengyu YANG ; Xiulian ZHENG ; Jianping LIN ; Shaoqing CHEN
Chinese Acupuncture & Moxibustion 2025;45(12):1759-1769
OBJECTIVE:
To explore the effect and mechanism of acupuncture at "Weizhong" (BL40) on microcirculation of paravertebral skeletal muscle in rats with chronic blunt injury of lumbar muscle based on the insulin-like growth factor-1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway.
METHODS:
Forty-eight SPF-grade SD rats were randomized into a blank group (8 rats) and a modeling group (40 rats). Chronic blunt injury model was established by weight impact method in the modeling group. Forty rats were successfully modeled, and were randomly divided into a model group, an acupuncture at Weizhong group (Weizhong group), an acupuncture at non-acupoint group (non-acupoint group), an inhibitor group, and an inhibitor+acupuncture at Weizhong group (inhibitor+Weizhong group), 8 rats in each group. In the Weizhong group and the inhibitor+Weizhong group, acupuncture was applied at bilateral "Weizhong" (BL40). In the non-acupoint group, acupuncture was applied at non-acupoints, i.e. points 0.5 cm inward from bilateral "Weizhong" (BL40). The acupuncture intervention was delivered 20 min each time, once a day for continuous 2 weeks. In the inhibitor group and the inhibitor+Weizhong group, intraperitoneal injection of IGF-1 receptor (IGF-1R) inhibitor was given once a day, at a dosage of 2 mg/100 g, for continuous 2 weeks. Before modeling and on the 1st, 7th and 14th days of intervention, the body mass was measured. Before and after modeling, and after intervention, the limb grip strength and paw withdrawal threshold (PWT) were measured. After intervention, the morphology of psoas muscle was observed by HE staining; the ultrastructure of psoas muscle capillaries was observed by electron microscopy; the levels of serum vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) were detected by ELISA; and the protein and mRNA expression of IGF-1, IGF-1R, PI3K, AKT of psoas muscle was detected by Western blot and real-time PCR.
RESULTS:
Compared with the blank group, in the model group, the body mass on the 7th and 14th days of intervention, the limb grip strength, and the PWT of left and right hind feet were decreased (P<0.001, P<0.01); the skeletal muscle cells showed enlarged intercellular space, loosely arranged and irregularly shaped, the capillaries in the psoas muscle tissues were edematous, and the lumen of the blood vessels was obviously atrophied; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were decreased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was decreased (P<0.001, P<0.05). Compared with the model group, in the Weizhong group, the body weight was increased on the 7th and 14th days of intervention (P<0.001), the limb grip strength and the PWT of the left and right hind feet were increased (P<0.001, P<0.01); the arrangement of the skeletal muscle cells was relatively tight and the intercellular space was reduced, the blood vessels tended to be regular and the structure of the basement membrane was continuous, while the lumens of blood vessels were collapsed locally; the levels of serum VEGF and eNOS were increased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were increased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was increased (P<0.001, P<0.01). Compared with the model group, in the inhibitor group, the body mass was decreased on the 7th and 14th days of intervention (P<0.05, P<0.01); the limb grip strength and the PWT of the left hind foot were decreased (P<0.01, P<0.001); the intercellular space of skeletal muscle cells was larger, the nuclei of the cells and erythrocytes were scattered in the intercellular space, the damage of the capillaries in the muscular tissues was serious, the collagen fibers were sparsely distributed and disorganized; the levels of serum VEGF and eNOS were decreased (P<0.001, P<0.01); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.05, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.01, P<0.001, P<0.05). Compared with the Weizhong group, in the non-acupoint group and the inhibitor+Weizhong group, the body mass was decreased on the 7th and 14th days of intervention (P<0.001, P<0.01), the limb grip strength was decreased (P<0.001); the morphology of muscle cell was relatively poor, with generally irregular, there was mild collapse and atrophy in the vascular lumen, and mild edema in the endothelial cells; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.001, P<0.01, P<0.05). Compared with the Weizhong group, the PWT of the left hind foot was decreased in the non-acupoint group (P<0.001), and PWT of the left and right hind feet was decreased in the inhibitor+Weizhong group (P<0.001).
CONCLUSION
Acupuncture at "Weizhong" (BL40) promotes lumbar muscle repair in chronic low back pain, its mechanism may be related to the activation of the IGF-1/PI3K/AKT pathway, thereby improving the microcirculation.
Animals
;
Insulin-Like Growth Factor I/genetics*
;
Acupuncture Therapy
;
Rats, Sprague-Dawley
;
Rats
;
Proto-Oncogene Proteins c-akt/genetics*
;
Male
;
Humans
;
Muscle, Skeletal/metabolism*
;
Signal Transduction
;
Phosphatidylinositol 3-Kinases/genetics*
;
Wounds, Nonpenetrating/metabolism*
;
Acupuncture Points
2.C/EBPβ-Lin28a positive feedback loop triggered by C/EBPβ hypomethylation enhances the proliferation and migration of vascular smooth muscle cells in restenosis.
Xiaojun ZHOU ; Shan JIANG ; Siyi GUO ; Shuai YAO ; Qiqi SHENG ; Qian ZHANG ; Jianjun DONG ; Lin LIAO
Chinese Medical Journal 2025;138(4):419-429
BACKGROUND:
The main cause of restenosis after percutaneous transluminal angioplasty (PTA) is the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). Lin28a has been reported to play critical regulatory roles in this process. However, whether CCAAT/enhancer-binding proteins β (C/EBPβ) binds to the Lin28a promoter and drives the progression of restenosis has not been clarified. Therefore, in the present study, we aim to clarify the role of C/EBPβ-Lin28a axis in restenosis.
METHODS:
Restenosis and atherosclerosis rat models of type 2 diabetes ( n = 20, for each group) were established by subjecting to PTA. Subsequently, the difference in DNA methylation status and expression of C/EBPβ between the two groups were assessed. EdU, Transwell, and rescue assays were performed to assess the effect of C/EBPβ on the proliferation and migration of VSMCs. DNA methylation status was further assessed using Methyltarget sequencing. The interaction between Lin28a and ten-eleven translocation 1 (TET1) was analysed using co-immunoprecipitation (Co-IP) assay. Student's t -test and one-way analysis of variance were used for statistical analysis.
RESULTS:
C/EBPβ expression was upregulated and accompanied by hypomethylation of its promoter in restenosis when compared with atherosclerosis. In vitroC/EBPβ overexpression facilitated the proliferation and migration of VSMCs and was associated with increased Lin28a expression. Conversely, C/EBPβ knockdown resulted in the opposite effects. Chromatin immunoprecipitation assays further demonstrated that C/EBPβ could directly bind to Lin28a promoter. Increased C/EBPβ expression and enhanced proliferation and migration of VSMCs were observed after decitabine treatment. Further, mechanical stretch promoted C/EBPβ and Lin28a expression accompanied by C/EBPβ hypomethylation. Additionally, Lin28a overexpression reduced C/EBPβ methylation via recruiting TET1 and enhanced C/EBPβ-mediated proliferation and migration of VSMCs. The opposite was noted in Lin28a knockdown cells.
CONCLUSION
Our findings suggest that the C/EBPβ-Lin28a axis is a driver of restenosis progression, and presents a promising therapeutic target for restenosis.
Animals
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Muscle, Smooth, Vascular/metabolism*
;
Rats
;
DNA Methylation/physiology*
;
CCAAT-Enhancer-Binding Protein-beta/genetics*
;
Male
;
Myocytes, Smooth Muscle/cytology*
;
Rats, Sprague-Dawley
;
RNA-Binding Proteins/genetics*
;
Cells, Cultured
;
Coronary Restenosis/metabolism*
3.Eccentric treadmill exercise promotes adaptive hypertrophy of gastrocnemius in rats.
Zhi-Qiang DAI ; Yu KE ; Yan ZHAO ; Ying YANG ; Hui-Wen WU ; Hua-Yu SHANG ; Zhi XIA
Acta Physiologica Sinica 2025;77(3):449-464
The present study aimed to investigate the effects of eccentric treadmill exercise on adaptive hypertrophy of skeletal muscle in rats. Thirty-two 3-month-old Sprague Dawley (SD) rats were selected and randomly assigned to one of the four groups based on their body weights: 2-week quiet control group (2C), 2-week downhill running exercise group (2E), 4-week quiet control group (4C), and 4-week downhill running exercise group (4E). The downhill running protocol for rats in the exercise groups involved slope of -16°, running speed of 16 m/min, training duration of 90 min, and 5 training sessions per week. Twenty-four hours after the final session of training, all the four groups of rats underwent an exhaustion treadmill exercise. After resting for 48 h, all the rats were euthanized and their gastrocnemius muscles were harvested for analysis. HE staining was used to measure the cross-sectional area (CSA) and diameter of muscle fibers. Transmission electron microscope was used to observe the ultrastructural changes in muscle fibers. Purithromycin surface labeling translation method was used to measure protein synthesis rate. Immunofluorescence double labeling was used to detect the colocalization levels of lysosomal-associated membrane protein 2 (Lamp2)-leucyl-tRNA synthetase (LARS) and Lamp2-mammalian target of rapamycin (mTOR). Western blot was used to measure the protein expression levels of myosin heavy chain (MHC) IIb and LARS, as well as the phosphorylation levels of mTOR, p70 ribosomal protein S6 kinase (p70S6K), and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The results showed that, compared with the 2C group rats, the 2E group rats showed significant increases in wet weight of gastrocnemius muscle, wet weight/body weight ratio, running distance, running time, pre- and post-exercise blood lactate levels, myofibrillar protein content, colocalization levels of Lamp2-LARS and Lamp2-mTOR, and LARS protein expression. Besides these above changes, compared with the 4C group, the 4E group further exhibited significantly increased fiber CSA, fiber diameter, protein synthesis rate, and phosphorylation levels of mTOR, p70S6K, and 4E-BP1. Compared with the quiet control groups, the exercise groups exhibited ultrastructural damage of rat gastrocnemius muscle, which was more pronounced in the 4E group. These findings suggest that eccentric treadmill exercise may promote mTOR translocation to lysosomal membrane, activating mTOR signaling via up-regulating LARS expression. This, in turn, increases protein synthesis rate through the mTOR-p70S6K-4E-BP1 signaling pathway, promoting protein deposition and inducing adaptive skeletal muscle hypertrophy. Although the ultrastructural changes of skeletal muscle are more pronounced, the relatively long training cycles during short-term exercise periods have a more significant effect on promoting gastrocnemius muscle protein synthesis and adaptive hypertrophy.
Animals
;
Rats, Sprague-Dawley
;
Physical Conditioning, Animal/physiology*
;
Rats
;
Muscle, Skeletal/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Male
;
Hypertrophy
;
Adaptation, Physiological/physiology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism*
;
Intracellular Signaling Peptides and Proteins
4.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
5.Rosa laevigata Michx. inhibits pulmonary arterial smooth muscle cell proliferation in hypertension by modulating the Src-AKT1 axis.
Ziwei YANG ; Chang LÜ ; Zhu DONG ; Shulei JI ; Shenghui BI ; Xuehua ZHANG ; Xiaowu WANG
Journal of Southern Medical University 2025;45(9):1889-1902
OBJECTIVES:
To investigate the synergistic mechanism of the traditional Chinese medicine Rosa laevigata Michx. (RLM) for treatment of pulmonary arterial hypertension (PAH).
METHODS:
Network pharmacological analysis was carried out to screen the active ingredients of RLM and PAH disease targets and construct the "component-target-disease" interaction network, followed by gene enrichment analysis and molecular docking studies. In the cell experiments, primary cultures of rat pulmonary arterial smooth muscle cells were exposed to hypoxia for 24 h and treated with solvent or 100, 200 and 300 mg/mL RLM, and the changes in cell proliferation were detected using Western blotting for PCNA and immunofluorescence staining. In the animal experiment, male SD rats were randomized into 5 control group, monocrotaline (MCT) solvent group, and MCT with RLM (100, 200 and 300 mg/mL) treatment groups. HE staining and immunofluorescence staining were used to observe histopathological changes in the pulmonary blood vessels of the rats.
RESULTS:
Seven core active ingredients (including β-sitosterol and kaempferol) in RLM and 39 key disease targets were identified, and molecular docking showed that SRC was a high-affinity target. KEGG enrichment analysis showed that the differential genes were significantly enriched in calcium signaling and PI3K-AKT pathways. In rat pulmonary arterial smooth muscle cells, hypoxic exposure significantly up-regulated cellular expression of PCNA and phosphorylation levels of Src and AKT1, which were obviously lowered by RLM treatment. In RLM-treated rat models, the mean pulmonary artery pressure and right ventricular hypertrophy index (Fulton index) were significantly reduced, the tricuspid annular plane systolic excursion (TAPSE) was improved, and pulmonary vascular wall thickening and fibrosis were obviously ameliorated.
CONCLUSIONS
RLM inhibits pulmonary arterial smooth muscle cell proliferation in rat models of hypertension possibly by regulating the Src-AKT1 axis, suggesting the potential of RLM as a new natural drug for treatment of pulmonary hypertension.
Animals
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Pulmonary Artery/cytology*
;
Male
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Hypertension, Pulmonary/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Muscle, Smooth, Vascular/cytology*
;
src-Family Kinases/metabolism*
;
Cells, Cultured
6.Research progress on the mechanism of leucine regulation of protein synthesis in aging skeletal muscle through LAT1.
Yu KE ; Zhi-Qiang DAI ; Ying YANG ; Hui-Wen WU ; Yan ZHAO ; Hua-Yu SHANG ; Zhi XIA
Acta Physiologica Sinica 2024;76(6):1001-1018
Age-related sarcopenia is a degenerative disease characterized by the decline in skeletal muscle mass and function during the aging process. Anabolic resistance, which refers to the diminished response of skeletal muscle to anabolic stimulation from leucine and other nutrients, is a significant contributing factor to its development. Recent studies have suggested that large neutral amino acid-transporter 1 (LAT1/SLC7A5) may play an important role in enhancing leucine's effects on protein synthesis in aging skeletal muscle. In this paper, the structure and function of LAT1 and its key molecules regulating aging skeletal muscle protein synthesis were reviewed, and the potential relationship between LAT1, as a transmembrane transporter of leucine, and protein synthesis in aging skeletal muscle was analyzed. The aim is to explore new mechanisms and insights for prevention and treatment of age-related sarcopenia, and provide reference for the application of relevant targets in clinical translational medicine.
Humans
;
Leucine/metabolism*
;
Muscle, Skeletal/metabolism*
;
Aging/metabolism*
;
Large Neutral Amino Acid-Transporter 1/metabolism*
;
Protein Biosynthesis
;
Sarcopenia/metabolism*
;
Animals
;
Muscle Proteins/biosynthesis*
7.Titin: structure, isoforms and functional regulation.
Chun-Jie GUO ; Liang YU ; Yan-Jin LI ; Yue ZHOU
Acta Physiologica Sinica 2023;75(4):544-554
Titin, the largest known protein in the body expressed in three isoforms (N2A, N2BA and N2B), is essential for muscle structure, force generation, conduction and regulation. Since the 1950s, muscle contraction mechanisms have been explained by the sliding filament theory involving thin and thick muscle filaments, while the contribution of cytoskeleton in force generation and conduction was ignored. With the discovery of insoluble protein residues and large molecular weight proteins in muscle fibers, the third myofilament, titin, has been identified and attracted a lot of interests. The development of single molecule mechanics and gene sequencing technology further contributed to the extensive studies on the arrangement, structure, elastic properties and components of titin in sarcomere. Therefore, this paper reviews the structure, isforms classification, elastic function and regulatory factors of titin, to provide better understanding of titin.
Connectin/genetics*
;
Muscle Proteins/metabolism*
;
Protein Isoforms/genetics*
;
Sarcomeres/metabolism*
;
Muscle Fibers, Skeletal/metabolism*
8.Electroacupuncture Attenuated Phenotype Transformation of Vascular Smooth Muscle Cells via PI3K/Akt and MAPK Signaling Pathways in Spontaneous Hypertensive Rats.
Xin-Yu CHEN ; Lu-Ping YANG ; Ya-Ling ZHENG ; Yu-Xi LI ; Dong-Ling ZHONG ; Rong-Jiang JIN ; Juan LI
Chinese journal of integrative medicine 2022;28(4):357-365
OBJECTIVE:
To investigate whether the antihypertensive mechanism of electroacupuncture (EA) is associated with attenuating phenotype transformation of vascular smooth muscle cells (VSMCs) via phosphoinositide3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways.
METHODS:
Eight Wistar-ktoyo (WKY) rats were set as normal blood pressure group (normal group). A total of 32 spontaneous hypertensive rats (SHRs) were randomly divided into 4 groups using random number tables: a model group, an EA group, an EA+PI3K antagonist group (EA+P group), and an EA+p38 MAPK agonist+extracellular signal-regulated kinase (ERK) agonist group (EA+M group) (n=8/group). SHRs in EA group, EA+P group and EA+M group received EA treatment 5 sessions per week for continuous 4 weeks, while rats in the normal and model groups were bundled in same condition. The systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) of each rat was measured at 0 week and the 4th week. After 4-week intervention, thoracic aorta was collected for hematoxylin-eosin (HE) staining, immunohistochemistry [the contractile markers α-smooth muscle actin (α-SMA) and calponin and the synthetic marker osteopontin (OPN)] and Western blot [α-SMA, calponin, OPN, PI3K, phosphorylated-Akt (p-Akt), Akt, p-p42/44 ERK, total p42/44 ERK, p-p38 MAPK and total p38 MAPK].
RESULTS:
EA significantly reduced SBP, DBP and MAP (P<0.01). HE staining showed that the wall thickness of thoracic aorta in EA group was significantly decreased (P<0.01). From results of immunohistochemistry and Western blot, EA increased the expression of α-SMA and calponin, and decreased the expression of OPN (P<0.01). In addition, the expression of PI3K and p-Akt increased (P<0.01), while the expression of p-p42/44 ERK and p-p38 MAPK decreased in EA group (P<0.01). However, these effects were reversed by PI3K antagonist, p38 MAPK agonist and ERK agonist.
CONCLUSIONS
EA was an effective treatment for BP management. The antihypertensive effect of EA may be related with inhibition of phenotypic transformation of VSMCs, in which the activation of PI3K/Akt and the repression of MAPK pathway were involved.
Animals
;
Electroacupuncture
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
MAP Kinase Signaling System
;
Muscle, Smooth, Vascular
;
Phenotype
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats
;
Rats, Inbred SHR
9.The effects of different exercise modes on Rab5 protein and glucose metabolism in skeletal muscle of type 2 diabetic mellitus rats.
Dong-Ru GUAN ; Ming FANG ; Man-Zi ZHU ; Ke WANG ; Yong CUI ; You-Ping BAI
Chinese Journal of Applied Physiology 2022;38(3):207-211
Objective: To investigate the effects of continuing exercise and load-bearing interval exercise on skeletal muscle tissue cell morphology, Ras-related proteins 5 (Rab5) mRNA and protein expression and glucose metabolism in skeletal muscle of type 2 diabetic mellitus (T2DM) rats. Methods: Eight SD rats were selected as controls group (CR), the others SD rats were fed with high fat and high sugar diet for 6 weeks before injecting STZ (35 mg/kg) to construct the T2DM model. Twenty-four T2DM rats were randomly devided into T2DM model group (DRM), continuing exercise group (DCRE) and load-bearing interval exercise group (DWRE), 8 rats in each group. DCRE exercise protocol, that was 15 m/min (10 min), 20 m/min (40 min), 15 m/min (10 min), during the first 1~2 weeks, and 18 m/min (10 min), 25 m/min (40 min), 15 m/min (10 min), during the second 3~8 weeks. DWRE exercise protocol: load weight 15% / 1~2 weeks, 30% / 3~4 weeks, 45% / 5~8 weeks, with 15 m/min (5 min), 12 groups and 3 min rest between groups. After 8 weeks, pathological and morphological changes of skeletal muscle were observed by HE. Rab5 and Glucose transporte 4 (GLUT4) mRNA expressions of skeletal muscle were tested by qRT-PCR. Rab5 protein expression in skeletal muscle was tested by immunofluorescence histochemistry and Western blot, and plasma Rab5 and Glycosylated Hemoglobin (GHb) concentrations were detected by ELISA. Results: Comparison with CR, DRM showed pathological damage of skeletal muscle, the expressions of Rab5 mRNA, protein and GLUT4 mRNA were all decreased in skeletal muscle (P<0.01), the serum levels of Rab5 and GHb were both significantly elevated (P<0.01). Comparison with DRM, both DCRE and DWRE significantly improved pathological damages of skeletal muscle, the expressions of Rab5 mRNA, protein and GLUT4 mRNA were all increased in skeletal muscle (P< 0.05, P<0.01), the serum levels of Rab5 and GHb were decreased (P<0.05, P<0.01), and there was no statistical difference between DCRE and DWRE groups (P>0.05). Conclusion: Two exercise modes can improve the pathological injury of skeletal muscle in type 2 diabetic rats, and enhance GLUT4 transport capacity by improving the expression of Rab5 gene and protein in skeletal muscle, and alleviate the imbalance of glucose metabolism homeostasis in skeletal muscle. However, there was no significant difference between the effects of two exercise modes on Rab5 protein and glucose metabolism in skeletal muscle.
Animals
;
Diabetes Mellitus, Experimental/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Glucose/metabolism*
;
Glycated Hemoglobin
;
Insulin
;
Muscle, Skeletal/metabolism*
;
Physical Conditioning, Animal/methods*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
rab5 GTP-Binding Proteins/metabolism*
10.Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice.
Jing ZHANG ; Jia Gui SONG ; Zhen Bin WANG ; Yu Qing GONG ; Tian Zhuo WANG ; Jin Yu ZHOU ; Jun ZHAN ; Hong Quan ZHANG
Journal of Peking University(Health Sciences) 2022;54(5):846-852
OBJECTIVE:
To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice.
METHODS:
Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway.
RESULTS:
The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated.
CONCLUSION
Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.
AMP-Activated Protein Kinases/metabolism*
;
Adenosine Monophosphate/metabolism*
;
Animals
;
Cadherins/metabolism*
;
Cytoskeletal Proteins/metabolism*
;
Endometrium/metabolism*
;
Eosine Yellowish-(YS)/metabolism*
;
Female
;
Hematoxylin/metabolism*
;
Hippo Signaling Pathway
;
Male
;
Mammals/metabolism*
;
Mice
;
Muscle Proteins
;
Ribosomal Protein S6/metabolism*
;
Sirolimus/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
YAP-Signaling Proteins

Result Analysis
Print
Save
E-mail