1.Progress and prospects of the effects and mechanisms of myokines in regulating fiber type transition of skeletal muscle.
Boyu HUANG ; Ziyi ZHANG ; Weijun PANG
Chinese Journal of Biotechnology 2024;40(12):4365-4381
The fiber type transition of skeletal muscle is an intricate and essential physiological process in the body, significantly influencing both the function and metabolism of skeletal muscle. This phenomenon is not only affected by external environmental changes but also intricately regulated by internal physiological mechanisms. Therefore, exploring the physiological process of muscle fiber type transition holds considerable significance for the treatment of human neuromuscular disorders and the improvement of meat quality in livestock and poultry. It has been discovered that the cytokines secreted by skeletal muscle, i.e., myokines, play a role in the fiber type transition of skeletal muscle. Myokines mainly act on skeletal muscle in autocrine and paracrine forms to participate in signal transduction and regulate the fiber type transition of skeletal muscle. This paper reviews the functional differences among various muscle fiber types, expounds the effects and mechanisms of myokines in regulating the transition processes of these fiber types, and prospects the future research directions in this field. This review is expected to provide theoretical support for enhancing the meat quality of livestock and poultry and treating skeletal muscle-related diseases.
Humans
;
Animals
;
Cytokines/metabolism*
;
Muscle Fibers, Skeletal/metabolism*
;
Muscle, Skeletal/metabolism*
;
Signal Transduction
;
Muscle Fibers, Slow-Twitch/metabolism*
;
Muscle Fibers, Fast-Twitch/metabolism*
;
Myostatin/metabolism*
;
Myokines
2.Effect of DHEA on Recovery of Muscle Atrophy Induced by Parkinson's Disease.
Myoung Ae CHOE ; Gyeong Ju AN ; Byung Soo KOO ; Songhee JEON
Journal of Korean Academy of Nursing 2011;41(6):834-842
PURPOSE: The purpose of this study was to determine the effect of dehydroepiandrosterone (DHEA) on recovery of muscle atrophy induced by Parkinson's disease. METHODS: The rat model was established by direct injection of 6-hydroxydopamine (6-OHDA, 20 microg) into the left striatum using stereotaxic surgery. Rats were divided into two groups; the Parkinson's disease group with vehicle treatment (Vehicle; n=12) or DHEA treatment group (DHEA; n=22). DHEA or vehicle was administrated intraperitoneally daily at a dose of 0.34 mmol/kg for 21 days. At 22-days after DHEA treatment, soleus, plantaris, and striatum were dissected. RESULTS: The DHEA group showed significant increase (p<.01) in the number of tyrosine hydroxylase (TH) positive neurons in the lesioned side substantia nigra compared to the vehicle group. Weights and Type I fiber cross-sectional areas of the contralateral soleus of the DHEA group were significantly greater than those of the vehicle group (p=.02, p=.00). Moreover, extracellular signal-regulated kinase (ERK) phosphorylation significantly decreased in the lesioned striatum, but was recovered with DHEA and also in the contralateral soleus muscle, Akt and ERK phosphorylation recovered significantly and the expression level of myosin heavy chain also recovered by DHEA treatment. CONCLUSION: Our results suggest that DHEA treatment recovers Parkinson's disease induced contralateral soleus muscle atrophy through Akt and ERK phosphorylation.
Animals
;
Corpus Striatum/drug effects/metabolism
;
Dehydroepiandrosterone/*pharmacology/therapeutic use
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Male
;
Muscle Fibers, Slow-Twitch/drug effects
;
Muscle, Skeletal/drug effects/metabolism
;
Muscular Atrophy/drug therapy/*etiology/*pathology
;
Myosins/metabolism
;
Neurons/drug effects/enzymology
;
Oxidopamine/toxicity
;
Parkinson Disease, Secondary/*chemically induced/*complications
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Tyrosine 3-Monooxygenase/metabolism
3.Increased activity of sarcoplasmic reticulum Ca(2+)-ATPase in soleus of hyperthyroid rat accelerates fatigue during intermittent tetanic contraction.
Zhi-Bin YU ; Bo JIAO ; Yun-Ying WANG ; Hui LI
Acta Physiologica Sinica 2008;60(3):362-368
The elevated plasma level of thyroxin and/or triiodothyronine in hyperthyroidism not only induces a transition from the innervated slow-twitch muscle fibers to fast-twitch fibers, but also changes the contractile function in transition muscle fibers. So the muscle weakness of thyrotoxic myopathy would relate to alteration in fatigability of tetanic contraction in muscles, especially in slow-twitch fibers. The aim of the present study was to observe the extent of fatigue of soleus in 4-week hyperthyroid rats and elucidate its underlying mechanism. The isolated soleus muscle strips were perfused in Krebs-Henseleit solution with or without an inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), cyclopiazonic acid (CPA). The contractile function of soleus was observed in twitch and intermittent tetanic contraction. The body weight in 4-week hyperthyroid rats decreased as compared with that in the control group [(292±13) g vs (354±10) g], but there was no difference between hyperthyroid and control groups in the wet weight of soleus [(107.3±8.6) mg vs (115.1±6.9) mg]. The time to peak tension (TPT) and time from peak tension to 75% relaxation (TR(75)) in twitch contraction were shortened in the soleus of hyperthyroid rats, and the TR(75) of tetanic contraction was also shortened as compared with that in the control group [(102.8±4.1) ms vs (178.8±15.8) ms]. The optimal stimulation frequency at which a maximal tension of tetanic contraction happened was shifted from 100 Hz in the control group to 140 Hz in hyperthyroid group. The soleus of hyperthyroid rat was easier to fatigue than that of the control rat during intermittent tetanic contraction. The SERCA activity also increased in soleus of hyperthyroid rat. The TR(75) in tetanic contraction was prolonged and showed an increased fatigue resistance in the soleus of control and hyperthyroid groups treated with 1.0 μmol/L CPA. The fatigue resistance of tetanic contraction in the soleus of hyperthyroid rat increased further with 5.0 μmol/L CPA treatment, but the resting tension kept rising. The 10 μmol/L CPA reduced the fatigue resistance of tetanic contraction in the soleus of hyperthyroid rat. The above results demonstrate that the SERCA activity in soleus can also influence the relaxation duration of twitch contraction like that in the myocardium. The SERCA activity in slow-twitch fibers is possibly involved in the regulation of fatigue resistance of intermittent tetanic contraction.
Animals
;
Fatigue
;
Glucose
;
Hyperthyroidism
;
enzymology
;
In Vitro Techniques
;
Muscle Contraction
;
Muscle Fibers, Slow-Twitch
;
enzymology
;
physiology
;
Muscle, Skeletal
;
enzymology
;
physiology
;
Rats
;
Sarcoplasmic Reticulum Calcium-Transporting ATPases
;
metabolism
;
Tromethamine
4.Effect of testosterone propionate on the distribution pattern of calcitonin gene-related peptide in different motoneuron pools.
Ge-ming SHI ; Shuang-cheng LI ; Kai ZHANG ; Ling-xiao XING ; Hui-xian CUI
Acta Academiae Medicinae Sinicae 2005;27(6):739-742
OBJECTIVETo study the effect of testosterone propionate (TP) on the distribution pattern of calcitonin gene-related peptide (CGRP) in two types of motoneuron (Mn) pools in rats.
METHODThe double labeling of cholera toxin B subunit coupled with colloidal gold (CB-Au) retrograde identification combining with immunocytochemistry was mainly used to reveal the distribution pattern of CGRP-like immunoreactivity (CGRP-LI) and its changes in the motoneuron pools labeled by CB-Au.
RESULTTP injected intramuscularly 28 days later significantly decreased CGRP expression in Mn pool innervating extensor digitorum longus (EDL, fast-twitch), comparing with corresponding control and castration group respectively (P < 0.001), while no significant effect on Mn pools innervating soleus (SOL, slow-twitch, P > 0.05) was observed.
CONCLUSIONEDL-Mn pool is more sensitive to testosterone propionate than SOL-Mn pool in regulating CGRP expression.
Animals ; Calcitonin Gene-Related Peptide ; drug effects ; metabolism ; Male ; Motor Neurons ; drug effects ; metabolism ; Muscle Fibers, Fast-Twitch ; cytology ; drug effects ; Muscle Fibers, Slow-Twitch ; cytology ; drug effects ; Rats ; Rats, Wistar ; Testosterone Propionate ; pharmacology

Result Analysis
Print
Save
E-mail