1.Lowest observed adverse effect level of pulmonary pathological alterations due to nitrous acid exposure in guinea pigs.
Masayuki OHYAMA ; Hiroshi NISHIMURA ; Kenichi AZUMA ; Chika MINEJIMA ; Norimichi TAKENAKA ; Shuichi ADACHI
Environmental Health and Preventive Medicine 2020;25(1):56-56
BACKGROUND:
We previously demonstrated that continuous exposure to nitrous acid gas (HONO) for 4 weeks, at a concentration of 3.6 parts per million (ppm), induced pulmonary emphysema-like alterations in guinea pigs. In addition, we found that HONO affected asthma symptoms, based on the measurement of respiratory function in rats exposed to 5.8 ppm HONO. This study aimed to investigate the dose-response effects of HONO exposure on the histopathological alterations in the respiratory tract of guinea pigs to determine the lowest observed adverse effect level (LOAEL) of HONO.
METHODS:
We continuously exposed male Hartley guinea pigs (n = 5) to four different concentrations of HONO (0.0, 0.1, 0.4, and 1.7 ppm) for 4 weeks (24 h/day). We performed histopathological analysis by observing lung tissue samples. We examined samples from three guinea pigs in each group under a light microscope and measured the alveolar mean linear intercept (Lm) and the thickness of the bronchial smooth muscle layer. We further examined samples from two guinea pigs in each group under a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
RESULTS:
We observed the following dose-dependent changes: pulmonary emphysema-like alterations in the centriacinar regions of alveolar ducts, significant increase in Lm in the 1.7 ppm HONO-exposure group, tendency for hyperplasia and pseudostratification of bronchial epithelial cells, and extension of the bronchial epithelial cells and smooth muscle cells in the alveolar duct regions.
CONCLUSIONS
These histopathological findings suggest that the LOAEL of HONO is < 0.1 ppm.
Alveolar Epithelial Cells
;
drug effects
;
Animals
;
Bronchi
;
drug effects
;
Dose-Response Relationship, Drug
;
Emphysema
;
chemically induced
;
Epithelial Cells
;
drug effects
;
Guinea Pigs
;
Hyperplasia
;
chemically induced
;
Inhalation Exposure
;
adverse effects
;
Lung
;
drug effects
;
pathology
;
ultrastructure
;
Male
;
Microscopy, Electron, Scanning
;
Microscopy, Electron, Transmission
;
Myocytes, Smooth Muscle
;
drug effects
;
Nitrous Acid
;
toxicity
2.The cardiovascular protective effect and mechanism of calycosin and its derivatives.
Li PAN ; Xuan-Fen ZHANG ; Wan-Sheng WEI ; Jing ZHANG ; Zhen-Zhen LI
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):907-915
Cardiovascular disease is the main cause of mortality and morbidity in the world, especially in developing countries. Drug therapy is one of the main ways to treat cardiovascular diseases. Among them, great progress has been made in the treatment of cardiovascular diseases with traditional Chinese medicine. In terms of experimental research, the mechanism of traditional Chinese medicine in the treatment of cardiovascular diseases has been thoroughly discussed in vitro and in vivo. In terms of clinical treatment, traditional Chinese medicine with flavonoids, saponins and alkaloids as the main effective components has a definite effect on the treatment of cardiovascular diseases such as arrhythmia, myocardial ischemia, angina pectoris and myocardial infarction, with high safety and good application prospects. With the further research on the effective ingredients, mechanism and adverse reactions of traditional Chinese medicine, it will be beneficial to the effectiveness of traditional Chinese medicine, reduce side effects and promote the modernization of traditional Chinese medicine. Calycosin and its derivatives, the main bioactive flavonoids in Astragalus membranaceus have multiple biological effects, such as antioxidant, pro-angiogenesis, anti-tumour, and anti-inflammatory effects. Based on the above biological effects, calycosin has been shown to have good potential for cardiovascular protection. The potent antioxidant effect of calycosin may play an important role in the cardiovascular protective potential. For injured cardiac myocytes, calycosin and its derivatives can alleviate the cell damage mainly marked by the release of myocardial enzymes and reduce the death level of cardiac myocytes mainly characterized by apoptosis through various mechanisms. For vascular endothelial cells, calycosin also has multiple effects and multiple mechanisms, such as promoting vascular endothelial cell proliferation, exerting vasodilating effect and directly affecting the synthesis function of endothelial cells. The present review will address the bioactivity of calycosin in cardiovascular diseases such as protective effects on cardiac myocytes and vascular endothelial cells and elucidate main mechanism of calycosin and its derivatives to exert the above biological effects.
Apoptosis/drug effects*
;
Cardiotonic Agents/pharmacology*
;
Cardiovascular Diseases/drug therapy*
;
Cell Proliferation/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Isoflavones/pharmacology*
;
Medicine, Chinese Traditional
;
Muscle Cells/drug effects*
3.Effects of rosuvastatin in homocysteine induced mouse vascular smooth muscle cell dedifferentiation and endoplasmic reticulum stress and its mechanisms.
Chang-Zuan ZHOU ; Sun-Lei PAN ; Hui LIN ; Li-Ping MENG ; Zheng JI ; Ju-Fang CHI ; Hang-Yuan GUO
Chinese Journal of Applied Physiology 2018;34(1):43-48
OBJECTIVE:
To investigate the effect of rosuvastatin on homocysteine (Hcy) induced mousevascular smooth muscle cells(VSMCs) dedifferentiation and endoplasmic reticulum stress(ERS).
METHODS:
VSMCs were co-cultured with Hcy and different concentration of rosuvastatin (0.1, 1.0 and 10 μmol/L). Cytoskeleton remodeling, VSMCs phenotype markers (smooth muscle actin-α, calponin and osteopontin) and ERS marker mRNAs (Herpud1, XBP1s and GRP78) were detected at predicted time. Tunicamycin was used to induce, respectively 4-phenylbutyrate(4-PBA) inhibition, ERS in VSMCs and cellular migration, proliferation and expression of phenotype proteins were analyzed. Mammalian target of rapamycin(mTOR)-P70S6 kinase (P70S6K) signaling agonist phosphatidic acid and inhibitor rapamycin were used in Rsv treated VSMCs. And then mTOR signaling and ERS associated mRNAs were detected.
RESULTS:
Compared with Hcy group, Hcy+ Rsv group (1.0 and 10 μmol/L) showed enhanced α-SMA and calponin expression (<0.01), suppressed ERS mRNA levels (<0.01) and promoted polarity of cytoskeleton. Compared with Hcy group, Hcy+Rsv group and Hcy+4-PBA group showed suppressed proliferation, migration and enhanced contractile protein expression (<0.01); while tunicamycin could reverse the effect of Rsv on Hcy treated cells. Furthermore, alleviated mTOR-P70S6K phosphorylation and ERS (<0.01)were observed in Hcy+Rsv group and Hcy+rapamycin group, compared with Hcy group; while phosphatidic acid inhibited the effect of Rsv on mTOR signaling activation and ERS mRNA levels (<0.01).
CONCLUSIONS
Rosuvastatin could inhibit Hcy induced VSMCs dedifferentiation suppressing ERS, which might be regulated by mTOR-P70S6K signaling.
Actins
;
metabolism
;
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Cell Dedifferentiation
;
drug effects
;
Cells, Cultured
;
Endoplasmic Reticulum Stress
;
drug effects
;
Heat-Shock Proteins
;
metabolism
;
Homocysteine
;
Membrane Proteins
;
metabolism
;
Mice
;
Microfilament Proteins
;
metabolism
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
cytology
;
drug effects
;
Ribosomal Protein S6 Kinases, 70-kDa
;
metabolism
;
Rosuvastatin Calcium
;
pharmacology
;
TOR Serine-Threonine Kinases
;
metabolism
;
X-Box Binding Protein 1
;
metabolism
4.Ulinastatin inhibits hypoxia-induced phenotype modulation of pulmonary artery smooth muscle cells by up-regulating PPAR-γ expression.
Kun TANG ; Chang LIU ; Lin CHEN ; Jing GAO ; Chao ZHANG
Journal of Southern Medical University 2016;36(10):1322-1327
OBJECTIVETo evaluate the effect of ulinastatin on hypoxia-induced phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) and explore the underlying mechanism.
METHODSCultured PASMCs from SD rats were exposed to normoxic condition, normoxia with ulinastatin treatment, hypoxia, or hypoxia with ulinastatin treatment. After 24 h of exposures, the cells were examined for SM-α-actin and caplonin expressions with immunofluorescence assay and for cell migration with CCK-8 andH-TdR assays. Western blotting was used for detecting the expressions of PPAR-γ in the cells, and PPAR-γ-responsive firefly luciferase reporter was employed for measuring the transcriptional activity of PPAR-γ. The PPAR-γ inhibitor GW9662 was used to explore the mechanism of the inhibitory effect of ulinastatin on hypoxia induced-phenotype modulation of PASMCs by measuring the changes in cell proliferation and migration.
RESULTSUlinastatin obviously enhanced the expressions of SM-α-actin and calponin (P<0.05), inhibited the proliferation and migration (P<0.05), and up-regulated the expression of PPAR-γ in PASMCs exposed to hypoxia (P<0.05). Pretreatment of the cells with GW9662 abolished the effect of ulinastatin on hypoxia-induced phenotype modulation of PASMCs and enhanced the cell proliferation and migration (P<0.05).
CONCLUSIONUlinastatin inhibits hypoxia-induced phenotype modulation of PASMCs from rats possibly by up-regulating the expression of PPAR-γ.
Actins ; metabolism ; Animals ; Calcium-Binding Proteins ; metabolism ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Glycoproteins ; pharmacology ; Microfilament Proteins ; metabolism ; Myocytes, Smooth Muscle ; cytology ; drug effects ; PPAR gamma ; metabolism ; Phenotype ; Pulmonary Artery ; cytology ; Rats ; Rats, Sprague-Dawley ; Up-Regulation
5.Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
Yu-fang CHEN ; Chen WANG ; Rui ZHANG ; Huan WANG ; Rong MA ; Si JIN ; Ji-zhou XIANG ; Qiang TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):8-13
The present study attempted to test a novel hypothesis that Ca(2+) sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus (10 µmol/L) increased the frequency of Ca(2+) sparks, which could be reversed by ryanodine (10 µmol/L). Electrophysiological experiments revealed that tacrolimus (10 µmol/L) increased the large-conductance Ca(2+)-activated K(+) currents (BKCa) in rat aortic vascular smooth muscle cells (AVSMCs), which could be blocked by ryanodine (10 µmol/L). Furthermore, tacrolimus (10 and 50 µmol/L) reduced the contractile force induced by norepinephrine (NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin (100 nmol/L) and ryanodine (10 µmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca(2+) sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
Animals
;
Aorta
;
cytology
;
metabolism
;
physiology
;
Calcium Signaling
;
Cells, Cultured
;
Large-Conductance Calcium-Activated Potassium Channels
;
metabolism
;
Male
;
Muscle, Smooth, Vascular
;
drug effects
;
metabolism
;
physiology
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
Norepinephrine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Ryanodine
;
pharmacology
;
Tacrolimus
;
pharmacology
;
Vasoconstriction
6.Effect of salidroside on the expression of connexin43 in the corpus cavernosum smooth muscle cells of hypoxic rats.
Jun-Feng YAN ; Jian-Feng ZHAO ; Gao-Yue ZHANG ; Xiao-Jun HUANG ; Gang CHEN ; Bo-Dong LÜ
National Journal of Andrology 2016;22(8):725-729
ObjectiveTo investigate the effect of salidroside on the expression of the connexin43 (Cx43) protein in the corpus cavernosum smooth muscle cells (CCSMCs) of hypoxic SD rats.
METHODSCCSMCs were cultured in vitro and identified by immunofluorescence staining. The cells were divided into six groups: normal control (21% O2), hypoxia (1% O2), hypoxia+salidroside (HS) 8 μg/ml,HS 16 μg/ml, HS 32 μg/ml, and HS 64 μg/ml, and cultured for 48 hours. Then the relative expression of Cx43 in different groups was detected by Western blot.
RESULTSThe in vitro cultured CCSMCs grew well and 90% of the cells showed positivity for α-SMA and desmin on immunohistochemistry. Salidroside ≤64 μg/ml produced no obvious toxicity on the CCSMCs. The expressions of Cx43 and phosphorylated proteins were dramatically increased in the hypoxia group as compared with the normal control (P<0.01 and P<0.05). The HS groups all showed significantly higher expression of Cx43 than the hypoxia group (P<0.01), but the phosphorylation rate of the Cx43 proteins was remarkably decreased (P<0.01).
CONCLUSIONSHypoxia increases the expression of Cx43 in the CCSMCs of SD rats. Salidroside ≤64 μg/ml cannot reverse the hypoxia-induced change but can reduce the dephosphorylation of Cx43 in CCSMCs. It is deduced that salidroside can protect CCSMCs by decreasing the phosphorylation of Cx43 and suppressing hypoxia-induced formation of the gap junction channel.
Actins ; metabolism ; Animals ; Cell Hypoxia ; Cells, Cultured ; Connexin 43 ; metabolism ; Glucosides ; pharmacology ; Male ; Myocytes, Smooth Muscle ; drug effects ; metabolism ; Penis ; drug effects ; metabolism ; Phenols ; pharmacology ; Phosphorylation ; drug effects ; Rats ; Rats, Sprague-Dawley
7.Effect of Pinggan Qianyang Recipe Containing Serum on Angiotensin II Induced Vascular Smooth Muscle Cell Proliferation and Migration and DNA Methylation.
Guang-wei ZHONG ; Ling WAN ; Dong-sheng WANG ; Xia FANG ; Qiong CHEN ; Ming-xuan XIE ; Tao TANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):580-585
OBJECTIVETo observe the effect of Pinggan Qianyang Recipe (PQR) on inhibiting angiotensin II (Ang II) induced proliferation and migration of vascular smooth muscle cells (VSMCs) and changes of DNA methylation.
METHODSVSMCs were cultured using tissue explant method, and PQR containing serum was prepared. Primarily cultured VSMCs were divided into four groups, the normal group, the model group, the folate group (folic acid intervention) , and the PQR group. The proliferation and migration of VSMCs was duplicated by Ang II. After 24-h Ang II induced culture, 40 microg/mL folic acid was added to the folate group for 48 h, while 5% PQR containing serum was added to the PQR group for 48 h. The cell growth curve of VSMCs was drawn by using Cell Counting Kit (CCK-8). The proliferative activity of VSMC was determined by MTT assay. The migration of VSMCs was measured by Millicell chamber. The general level of cytosine methylation in cell nucleus was detected via 5-mC antibodies immunofluorescence, and mRNA expression levels of DNA methyltransferase 1 (DNMT1) were measured by Real-time q-polymerase chain reaction (q-PCR).
RESULTSVSMCs were promoted by Ang II at 10(-6) mol/L for 24 h. Compared with the normal group, the proliferative activity and migration quantity of VSMCs obviously increased, and DNA methylation level obviously decreased (P < 0.05, P < 0.01). Compared with the model group, the cell growth, proliferative activity and migration quantity of VSMCs obviously decreased and the general DNA methylation level increased in the folate group and the PQR group (P < 0.05, P < 0.01). Compared with the normal group, the mRNA expression of DNMT1 decreased in the model group (P < 0.01). Compared with the model group, mRNA expression of DNMT1 in Ang II induced VSMCs was obviously enhanced in the folate group and the PQR group (P < 0.01).
CONCLUSIONSPQR could inhibit Ang II induced proliferation and migration of VSMCs, and cause high genomic DNA methylation level. Changes of DNA methylation might be associated with DNMT1 expression.
Angiotensin II ; pharmacology ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; DNA (Cytosine-5-)-Methyltransferase 1 ; DNA (Cytosine-5-)-Methyltransferases ; metabolism ; DNA Methylation ; Drugs, Chinese Herbal ; pharmacology ; Humans ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects
8.Effect of Shuwel Decoction on Enteric Nervous System-Interstitial Cells of Cajal-Smooth Muscle Network Structure Injury in Deep Muscle Nerve Plexus of Functional Dyspepsia Rats.
Xu-an GUO ; Yun LIU ; Xiao-juan WANG ; Yin XU ; Huai-liang TAN ; Jiao YIN
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):454-459
OBJECTIVETo observe morphological changes of enteric nervous system (ENS)-interstitial cells of Cajal (ICC)-smooth muscle cell (SMC) structure injury in deep muscle nerve plexus offunctional dyspepsia (FD) rats, and the repair of Shuwei Decoction (SD) on it, and to explore its effecton FD.
METHODSTotally 72 rats were randomly divided into the control group, the model group, the lowdose SD group, the medium dose SD group, and the high dose SD group, the Mosapride group, 12 ineach group. Rats in the low dose SD group, the medium dose SD group, and the high dose SD group were intragastrically fed with SD at 0.767, 1.534, 3.068 g/mL, respectively. Rats in the Mosapride group were intragastrically fed with Mosapride (1.37 mg/kg). FD rat model with Gan depression Pi deficiency syndrome (GDPDS) was established using complex pathogenic factors. Corresponding liquors were respectively administered to rats in corresponding groups from the 3rd day after modeling. Distilled water(10 mL/kg) was administered to rats in the control group and the model group, once per day for 14 successive days. Rats were sacrificed and small intestine tissues collected for observing ENS-ICC-SMC structure injury using immunofluorescence double labeling, laser scanning confocal microscope, and transmission electron microscope at day 15. Repair of SD on it was also observed.
RESULTSENS-ICC SMC structure was incomplete, with obvious injury in mutual link of ICC, ICC, SMC, and connecting structure. ENS-ICC-SMC structure was more complete in high, medium, and low dose SD groups, with close link of ICC and SMO. Their connecting structures were in good conditions.
CONCLUSIONSD could keep the integrity of ENS-ICC-SMC structure by promoting regeneration and morphology of ICC, thereby, improving gastrointestinal movement disorder and showing therapeutic effect on FD.
Animals ; Benzamides ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Dyspepsia ; drug therapy ; Enteric Nervous System ; drug effects ; Interstitial Cells of Cajal ; drug effects ; Morpholines ; pharmacology ; Muscle, Smooth ; drug effects ; Random Allocation ; Rats
9.The effects and mechanisms of high glucose on the phenotype transformation of rat vascular smooth muscle cells.
Jing ZHANG ; Hai-rong CHU ; Ying GUO ; Jian-hua LIU ; Wen-Ping LI ; Hong LI ; Min CHENG
Chinese Journal of Applied Physiology 2015;31(5):458-461
OBJECTIVETo investigate the effects and mechanisms of high glucose on the phenotype transformation of rat vascular smooth muscle cells (VSMCs).
METHODSVSMCs ere isolated from rat thoracic aorta and the 3rd-5th VSMCs were incubated with normal glucose (5.5 mmol/L), high glucose (25 mmol/L), or high glucose (25 mmol/L) + P38 inhibitor (25 mmol/L +SB203580) for another 24 hours. Then the gene expression of osteopontin (OPN), alpha smooth-actin (alpha-SMA), matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9(MMP-9) were assayed by real time RT-PCR, the protein expression of P38 were assayed by Western blot.
RESULTS(1) High glucose promoted the phenotype transformation of VSMCs and up-regulated the expression of MMP-2 and MMP-9. (2) High glucose promoted the phosphorylation of P38. (3) SB203580, the inhibitor of P38/MAPK signal pathway, inhibited the effects of high glucose on phenotype transformation and expression of MMP-2 and MMP-9.
CONCLUSIONHigh glucose may promote phenotype transformation of VSMCs via the signal pathway of P38/MAPK.
Actins ; metabolism ; Animals ; Aorta, Thoracic ; cytology ; Blotting, Western ; Cells, Cultured ; Glucose ; pharmacology ; Imidazoles ; pharmacology ; MAP Kinase Signaling System ; Matrix Metalloproteinase 2 ; Matrix Metalloproteinase 9 ; metabolism ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects ; Osteopontin ; metabolism ; Phenotype ; Pyridines ; pharmacology ; Rats ; p38 Mitogen-Activated Protein Kinases ; metabolism
10.Exploring the active ingredient of Chinese yellow wine which could inhibit the Hcy induced proliferation and migration of vascular smooth muscle cells.
Li-ping MENG ; Chang-zuan ZHOU ; Yan GUO ; Xiao-ya ZHAI ; Cheng-jian JIANG ; Gang LI ; Ju-fang CHI ; Hang-yuan GUO
Chinese Journal of Applied Physiology 2015;31(5):437-442
OBJECTIVETo explore the active ingredients in the Chinese yellow wine could inhibit the proliferation and migration of rat vascular smooth muscle cells induced by homocysteine (Hcy).
METHODSThe primary culture and identification of rat vascular smooth muscle cells (VSMCs) was conducted, and the VSMCs in passage 4-7 were used in the following experiments. The VSMCs were divided into 7 groups: control, Hcy (1 mmol/L), Hcy + oligosaccharide, Hcy + polypeptides, Hcy + polyphenols, Hcy + alcohol, Hcy + Chinese yellow wine and were given the corresponding treatment. The proliferation of VSMCs was determined by MTT. Transwell chambers and would healing were employed to test the migratory ability of VSMCs. Wester blot and gelatin zymography were used to investigate the expressions and activities of metal matrix proteinase 2/9 (MMP-2/9) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in VSMCs of each group.
RESULTSCompared with control group, the proliferation, migration and the expression and activity of MMP-2/9 of VSMCs were significantly increased in the VSMCs of Hcy group (P < 0.01). Compared with Hcy group, the proliferation, migration and the expression and activity of MMP-2/9 of VSMCs were significantly decreases in the VSMCs of polypeptides group, polyphenols group and Chinese yellow wine group. However, the expression of TIMP-2 among each group had no significant difference.
CONCLUSIONPolypeptides and polyphenols in the Chinese yellow wine could inhibit the proliferation and migration of VSMCs induced by Hcy.
Animals ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Homocysteine ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects ; Peptides ; chemistry ; Polyphenols ; chemistry ; Rats ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism ; Wine

Result Analysis
Print
Save
E-mail