1.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
2.Rosa laevigata Michx. inhibits pulmonary arterial smooth muscle cell proliferation in hypertension by modulating the Src-AKT1 axis.
Ziwei YANG ; Chang LÜ ; Zhu DONG ; Shulei JI ; Shenghui BI ; Xuehua ZHANG ; Xiaowu WANG
Journal of Southern Medical University 2025;45(9):1889-1902
OBJECTIVES:
To investigate the synergistic mechanism of the traditional Chinese medicine Rosa laevigata Michx. (RLM) for treatment of pulmonary arterial hypertension (PAH).
METHODS:
Network pharmacological analysis was carried out to screen the active ingredients of RLM and PAH disease targets and construct the "component-target-disease" interaction network, followed by gene enrichment analysis and molecular docking studies. In the cell experiments, primary cultures of rat pulmonary arterial smooth muscle cells were exposed to hypoxia for 24 h and treated with solvent or 100, 200 and 300 mg/mL RLM, and the changes in cell proliferation were detected using Western blotting for PCNA and immunofluorescence staining. In the animal experiment, male SD rats were randomized into 5 control group, monocrotaline (MCT) solvent group, and MCT with RLM (100, 200 and 300 mg/mL) treatment groups. HE staining and immunofluorescence staining were used to observe histopathological changes in the pulmonary blood vessels of the rats.
RESULTS:
Seven core active ingredients (including β-sitosterol and kaempferol) in RLM and 39 key disease targets were identified, and molecular docking showed that SRC was a high-affinity target. KEGG enrichment analysis showed that the differential genes were significantly enriched in calcium signaling and PI3K-AKT pathways. In rat pulmonary arterial smooth muscle cells, hypoxic exposure significantly up-regulated cellular expression of PCNA and phosphorylation levels of Src and AKT1, which were obviously lowered by RLM treatment. In RLM-treated rat models, the mean pulmonary artery pressure and right ventricular hypertrophy index (Fulton index) were significantly reduced, the tricuspid annular plane systolic excursion (TAPSE) was improved, and pulmonary vascular wall thickening and fibrosis were obviously ameliorated.
CONCLUSIONS
RLM inhibits pulmonary arterial smooth muscle cell proliferation in rat models of hypertension possibly by regulating the Src-AKT1 axis, suggesting the potential of RLM as a new natural drug for treatment of pulmonary hypertension.
Animals
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Pulmonary Artery/cytology*
;
Male
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Hypertension, Pulmonary/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Muscle, Smooth, Vascular/cytology*
;
src-Family Kinases/metabolism*
;
Cells, Cultured
3.Effects of rosuvastatin in homocysteine induced mouse vascular smooth muscle cell dedifferentiation and endoplasmic reticulum stress and its mechanisms.
Chang-Zuan ZHOU ; Sun-Lei PAN ; Hui LIN ; Li-Ping MENG ; Zheng JI ; Ju-Fang CHI ; Hang-Yuan GUO
Chinese Journal of Applied Physiology 2018;34(1):43-48
OBJECTIVE:
To investigate the effect of rosuvastatin on homocysteine (Hcy) induced mousevascular smooth muscle cells(VSMCs) dedifferentiation and endoplasmic reticulum stress(ERS).
METHODS:
VSMCs were co-cultured with Hcy and different concentration of rosuvastatin (0.1, 1.0 and 10 μmol/L). Cytoskeleton remodeling, VSMCs phenotype markers (smooth muscle actin-α, calponin and osteopontin) and ERS marker mRNAs (Herpud1, XBP1s and GRP78) were detected at predicted time. Tunicamycin was used to induce, respectively 4-phenylbutyrate(4-PBA) inhibition, ERS in VSMCs and cellular migration, proliferation and expression of phenotype proteins were analyzed. Mammalian target of rapamycin(mTOR)-P70S6 kinase (P70S6K) signaling agonist phosphatidic acid and inhibitor rapamycin were used in Rsv treated VSMCs. And then mTOR signaling and ERS associated mRNAs were detected.
RESULTS:
Compared with Hcy group, Hcy+ Rsv group (1.0 and 10 μmol/L) showed enhanced α-SMA and calponin expression (<0.01), suppressed ERS mRNA levels (<0.01) and promoted polarity of cytoskeleton. Compared with Hcy group, Hcy+Rsv group and Hcy+4-PBA group showed suppressed proliferation, migration and enhanced contractile protein expression (<0.01); while tunicamycin could reverse the effect of Rsv on Hcy treated cells. Furthermore, alleviated mTOR-P70S6K phosphorylation and ERS (<0.01)were observed in Hcy+Rsv group and Hcy+rapamycin group, compared with Hcy group; while phosphatidic acid inhibited the effect of Rsv on mTOR signaling activation and ERS mRNA levels (<0.01).
CONCLUSIONS
Rosuvastatin could inhibit Hcy induced VSMCs dedifferentiation suppressing ERS, which might be regulated by mTOR-P70S6K signaling.
Actins
;
metabolism
;
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Cell Dedifferentiation
;
drug effects
;
Cells, Cultured
;
Endoplasmic Reticulum Stress
;
drug effects
;
Heat-Shock Proteins
;
metabolism
;
Homocysteine
;
Membrane Proteins
;
metabolism
;
Mice
;
Microfilament Proteins
;
metabolism
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
cytology
;
drug effects
;
Ribosomal Protein S6 Kinases, 70-kDa
;
metabolism
;
Rosuvastatin Calcium
;
pharmacology
;
TOR Serine-Threonine Kinases
;
metabolism
;
X-Box Binding Protein 1
;
metabolism
4.Sulfur Dioxide Inhibits Extracellular Signal-regulated Kinase Signaling to Attenuate Vascular Smooth Muscle Cell Proliferation in Angiotensin II-induced Hypertensive Mice.
Hui-Juan WU ; Ya-Qian HUANG ; Qing-Hua CHEN ; Xiao-Yu TIAN ; Jia LIU ; Chao-Shu TANG ; Hong-Fang JIN ; Jun-Bao DU ;
Chinese Medical Journal 2016;129(18):2226-2232
BACKGROUNDClarifying the mechanisms underlying vascular smooth muscle cell (VSMC) proliferation is important for the prevention and treatment of vascular remodeling and the reverse of hyperplastic lesions. Previous research has shown that the gaseous signaling molecule sulfur dioxide (SO2) inhibits VSMC proliferation, but the mechanism for the inhibition of the angiotensin II (AngII)-induced VSMC proliferation by SO2has not been fully elucidated. This study was designed to investigate if SO2inhibited VSMC proliferation in mice with hypertension induced by AngII.
METHODSThirty-six male C57 mice were randomly divided into control, AngII, and AngII + SO2groups. Mice in AngII group and AngII + SO2group received a capsule-type AngII pump implanted under the skin of the back at a slow-release dose of 1000 ng·kg-1·min-1. In addition, mice in AngII + SO2received intraperitoneal injections of SO2donor. Arterial blood pressure of tail artery was determined. The thickness of the aorta was measured by elastic fiber staining, and proliferating cell nuclear antigen (PCNA) and phosphorylated-extracellular signal-regulated kinase (P-ERK) were detected in aortic tissues. The concentration of SO2 in serum and aortic tissue homogenate supernatant was measured using high-performance liquid chromatography with fluorescence determination. In the in vitro study, VSMC of A7R5 cell lines was divided into six groups: control, AngII, AngII + SO2, PD98059 (an inhibitor of ERK phosphorylation), AngII + PD98059, and AngII + SO2 + PD98059. Expression of PCNA, ERK, and P-ERK was determined by Western blotting.
RESULTSIn animal experiment, compared with the control group, AngII markedly increased blood pressure (P < 0.01) and thickened the aortic wall in mice (P < 0.05) with an increase in the expression of PCNA (P < 0.05). SO2, however, reduced the systemic hypertension and the wall thickness induced by AngII (P < 0.05). It inhibited the increased expression of PCNA and P-ERK induced by AngII (P < 0.05). In cell experiment, PD98059, an ERK phosphorylation inhibitor, blocked the inhibitory effect of SO2on VSMC proliferation (P < 0.05).
CONCLUSIONSERK signaling is involved in the mechanisms by which SO2inhibits VSMC proliferation in AngII-induced hypertensive mice via ERK signaling.
Angiotensin II ; pharmacology ; Animals ; Cell Proliferation ; drug effects ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Hypertension ; chemically induced ; drug therapy ; Male ; Mice ; Muscle, Smooth, Vascular ; cytology ; drug effects ; Signal Transduction ; drug effects ; Sulfur Dioxide ; therapeutic use
5.Effect of Pinggan Qianyang Recipe Containing Serum on Angiotensin II Induced Vascular Smooth Muscle Cell Proliferation and Migration and DNA Methylation.
Guang-wei ZHONG ; Ling WAN ; Dong-sheng WANG ; Xia FANG ; Qiong CHEN ; Ming-xuan XIE ; Tao TANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):580-585
OBJECTIVETo observe the effect of Pinggan Qianyang Recipe (PQR) on inhibiting angiotensin II (Ang II) induced proliferation and migration of vascular smooth muscle cells (VSMCs) and changes of DNA methylation.
METHODSVSMCs were cultured using tissue explant method, and PQR containing serum was prepared. Primarily cultured VSMCs were divided into four groups, the normal group, the model group, the folate group (folic acid intervention) , and the PQR group. The proliferation and migration of VSMCs was duplicated by Ang II. After 24-h Ang II induced culture, 40 microg/mL folic acid was added to the folate group for 48 h, while 5% PQR containing serum was added to the PQR group for 48 h. The cell growth curve of VSMCs was drawn by using Cell Counting Kit (CCK-8). The proliferative activity of VSMC was determined by MTT assay. The migration of VSMCs was measured by Millicell chamber. The general level of cytosine methylation in cell nucleus was detected via 5-mC antibodies immunofluorescence, and mRNA expression levels of DNA methyltransferase 1 (DNMT1) were measured by Real-time q-polymerase chain reaction (q-PCR).
RESULTSVSMCs were promoted by Ang II at 10(-6) mol/L for 24 h. Compared with the normal group, the proliferative activity and migration quantity of VSMCs obviously increased, and DNA methylation level obviously decreased (P < 0.05, P < 0.01). Compared with the model group, the cell growth, proliferative activity and migration quantity of VSMCs obviously decreased and the general DNA methylation level increased in the folate group and the PQR group (P < 0.05, P < 0.01). Compared with the normal group, the mRNA expression of DNMT1 decreased in the model group (P < 0.01). Compared with the model group, mRNA expression of DNMT1 in Ang II induced VSMCs was obviously enhanced in the folate group and the PQR group (P < 0.01).
CONCLUSIONSPQR could inhibit Ang II induced proliferation and migration of VSMCs, and cause high genomic DNA methylation level. Changes of DNA methylation might be associated with DNMT1 expression.
Angiotensin II ; pharmacology ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; DNA (Cytosine-5-)-Methyltransferase 1 ; DNA (Cytosine-5-)-Methyltransferases ; metabolism ; DNA Methylation ; Drugs, Chinese Herbal ; pharmacology ; Humans ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects
6.Anti-Proliferative Effects of Rutin on OLETF Rat Vascular Smooth Muscle Cells Stimulated by Glucose Variability.
Sung Hoon YU ; Jae Myung YU ; Hyung Joon YOO ; Seong Jin LEE ; Dong Hyun KANG ; Young Jung CHO ; Doo Man KIM
Yonsei Medical Journal 2016;57(2):373-381
PURPOSE: Proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in atherosclerosis. Rutin is a major representative of the flavonol subclass of flavonoids and has various pharmacological activities. Currently, data are lacking regarding its effects on VSMC proliferation induced by intermittent hyperglycemia. Here, we demonstrate the effects of rutin on VSMC proliferation and migration according to fluctuating glucose levels. MATERIALS AND METHODS: Primary cultures of male Otsuka Long-Evans Tokushima Fatty (OLETF) rat VSMCs were obtained from enzymatically dissociated rat thoracic aortas. VSMCs were incubated for 72 h with alternating normal (5.5 mmol/L) and high (25.0 mmol/L) glucose media every 12 h. Proliferation and migration of VSMCs, the proliferative molecular pathway [including p44/42 mitogen-activated protein kinases (MAPK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), p38 MAPK, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal protein kinase (JNK), nuclear factor kappa B (NF-kappaB), and Akt], the migratory pathway (big MAPK 1, BMK1), reactive oxygen species (ROS), and apoptotic pathway were analyzed. RESULTS: We found enhanced proliferation and migration of VSMCs when cells were incubated in intermittent high glucose conditions, compared to normal glucose. These effects were lowered upon rutin treatment. Intermittent treatment with high glucose for 72 h increased the expression of phospho-p44/42 MAPK (extracellular signal regulated kinase 1/2, ERK1/2), phospho-MEK1/2, phospho-PI3K, phospho-NF-kappaB, phospho-BMK1, and ROS, compared to treatment with normal glucose. These effects were suppressed by rutin. Phospho-p38 MAPK, phospho-Akt, JNK, and apoptotic pathways [B-cell lymphoma (Bcl)-xL, Bcl-2, phospho-Bad, and caspase-3] were not affected by fluctuations in glucose levels. CONCLUSION: Fluctuating glucose levels increased proliferation and migration of OLETF rat VSMCs via MAPK (ERK1/2), BMK1, PI3K, and NF-kappaB pathways. These effects were inhibited by the antioxidant rutin.
Animals
;
Caspase 3/metabolism
;
Cell Movement/*drug effects
;
Cell Proliferation/*drug effects
;
Flavonoids/*pharmacology
;
Glucose/*metabolism/pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
MAP Kinase Kinase 1
;
Male
;
Mitogen-Activated Protein Kinase 3
;
Muscle, Smooth, Vascular/cytology/*drug effects/enzymology
;
Myocytes, Smooth Muscle/metabolism
;
NF-kappa B/metabolism
;
Phosphatidylinositol 3-Kinases
;
Protein Kinase Inhibitors/*pharmacology
;
Rats
;
Rats, Inbred OLETF
;
Rats, Long-Evans
;
Reactive Oxygen Species/metabolism
;
Rutin/*pharmacology
;
p38 Mitogen-Activated Protein Kinases/metabolism
7.Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
Yu-fang CHEN ; Chen WANG ; Rui ZHANG ; Huan WANG ; Rong MA ; Si JIN ; Ji-zhou XIANG ; Qiang TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):8-13
The present study attempted to test a novel hypothesis that Ca(2+) sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus (10 µmol/L) increased the frequency of Ca(2+) sparks, which could be reversed by ryanodine (10 µmol/L). Electrophysiological experiments revealed that tacrolimus (10 µmol/L) increased the large-conductance Ca(2+)-activated K(+) currents (BKCa) in rat aortic vascular smooth muscle cells (AVSMCs), which could be blocked by ryanodine (10 µmol/L). Furthermore, tacrolimus (10 and 50 µmol/L) reduced the contractile force induced by norepinephrine (NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin (100 nmol/L) and ryanodine (10 µmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca(2+) sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
Animals
;
Aorta
;
cytology
;
metabolism
;
physiology
;
Calcium Signaling
;
Cells, Cultured
;
Large-Conductance Calcium-Activated Potassium Channels
;
metabolism
;
Male
;
Muscle, Smooth, Vascular
;
drug effects
;
metabolism
;
physiology
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
Norepinephrine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Ryanodine
;
pharmacology
;
Tacrolimus
;
pharmacology
;
Vasoconstriction
8.Calpain mediated pulmonary vascular remodeling in hypoxia induced pulmonary hypertension.
Weifang ZHANG ; Tiantian ZHU ; Aizhen XIONG ; Xiaoyue GE ; Ruilai XU ; Shegui LU ; Changping HU
Journal of Central South University(Medical Sciences) 2016;41(9):929-936
OBJECTIVE:
To explore the role of calpain in pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension and the underlying mechanisms.
METHODS:
Sprague-Dawley rats were randomly divided into the hypoxia group and the normoxia control group. Right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored by a method with right external jugular vein cannula. Right ventricular hypertrophy index was presented as the ratio of right ventricular weight to left ventricular weight (left ventricle plus septum weight). Levels of calpain-1, -2 and -4 mRNA in pulmonary artery were determined by real-time PCR. Levels of calpain-1, -2 and -4 protein were determined by Western blot. Primary rat pulmonary arterial smooth muscle cells (PASMCs) were divided into 4 groups: a normoxia control group, a normoxia+MDL28170 group, a hypoxia group and a hypoxia+MDL28170 group. Cell proliferation was detected by MTS and flow cytometry. Levels of Ki-67 and proliferating cell nuclear antigen (PCNA) mRNA were determined by real-time PCR.
RESULTS:
RVSP, mPAP and right ventricular remodeling index were significantly elevated in the hypoxia group compared to those in the normoxia group. In the hypoxia group, pulmonary vascular remodeling was significantly developed, accompanied by up-regulation of calpain-1, -2 and -4. MDL28170 significantly inhibited hypoxia-induced proliferation of PASMCs concomitant with the suppression of Ki-67 and PCNA mRNA expression.
CONCLUSION
Calpain mediates vascular remodeling via promoting proliferation of PASMCs in hypoxia-induced pulmonary hypertension.
Animals
;
Calpain
;
genetics
;
physiology
;
Cell Proliferation
;
Dipeptides
;
physiology
;
Hypertension, Pulmonary
;
chemically induced
;
genetics
;
physiopathology
;
Hypertrophy, Right Ventricular
;
Hypoxia
;
Ki-67 Antigen
;
drug effects
;
Myocytes, Smooth Muscle
;
physiology
;
Proliferating Cell Nuclear Antigen
;
drug effects
;
Pulmonary Artery
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Up-Regulation
;
Vascular Remodeling
;
genetics
;
physiology
9.Oxidized LDL stimulates lipid peroxidation-derived DNA and protein adducts in human vascular endothelial and smooth muscle cells.
Shuang LIU ; Wei HOU ; Hua QIN ; Ying WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(2):200-205
Oxidized low density lipoprotein (oxLDL) can trigger intracellular production of reactive oxygen species and lipid peroxidation (LPO), and is thought to contribute to initiation and progression of atherosclerosis. In order to understand the correlation between oxLDL and macromolecular damage, we measured levels of LPO-derived miscoding etheno-DNA adducts and LPO-modified proteins in cultured human vascular endothelial and smooth muscle cells after incubation with oxLDL for up to 48 h. A semi-quantative analysis method for 1, N6-ethenodeoxyadenosine (ɛdA) by immunohistochemistry was applied. After oxLDL stimulation, ɛdA-stained nuclei were significantly increased in both endothelial and smooth muscle cells. Similarly, 4-hydroxy-2-nonenal (4-HNE)-modified proteins, as analyzed by immunohistochemistry and Western blotting, were also 3-5 fold increased. It was concluded LPO-derived etheno-DNA adducts and LPO-modified proteins are strongly induced by oxLDL in human vascular endothelial and smooth muscle cells. This macromolecular damage may contribute to the dysfunction of arterial endothelium and the onset of atherosclerosis.
DNA
;
metabolism
;
Endothelium, Vascular
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Lipid Peroxidation
;
drug effects
;
Lipoproteins, LDL
;
pharmacology
;
Muscle, Smooth
;
cytology
;
drug effects
;
metabolism
;
Proteins
;
metabolism
10.Effect of ouabain on intracellular Ca(2+) concentration in rat vascular smooth muscle cells in vitro.
Mingjuan ZHANG ; Meicheng ZHANG ; Chaoying ZHANG ; Jun YANG ; Canzhan ZHU ; Zongming DUAN
Journal of Southern Medical University 2015;35(7):960-965
OBJECTIVETo explore the effect of ouabain on intracellular Ca(2+) concentration ([Ca(2+)]i) in thoracic aorta vascular smooth muscle cells (VSMCs) in vitro.
METHODSPrimary SD rat thoracic aorta VSMCs were cultured by tissue adherent method and identified by immunochemistry. The binding ability between ouabain and VSMCs was detected by autoradiography, and fluo 3-AM (a Ca(2+) fluorescent probe) was employed to investigate whether ouabain affected VSMCs within a short period of time. The effect of a truncated fragment of the sodium pump α2 subunit was assayed in antagonizing the effect of ouabain on [Ca(2+)]i in the VSMCs.
RESULTSWithin the concentration range of 0.1-100 nmol/L, ouabain was found to dose-dependently bind to the VSMCs. Different concentrations of ouabain (0-3200 nmol/L) caused a transient, dose-dependent increase in [Ca(2+)]i in the VSMCs, which was antagonized by the application of the truncated fragment of sodium pump α2 subunit.
CONCLUSIONSElevations in [Ca(2+)]i in the VSMCs can be the cytological basis of high ouabain-induced hypertension. The truncated fragment of the sodium pump α2 subunit can antagonize ouabain-induced increase of [Ca(2+)]i in the VSMCs, which provides a clue for understanding the pathogenesis of and devising a therapeutic strategy for high ouabain-induced hypertension.
Animals ; Aorta, Thoracic ; cytology ; Calcium ; metabolism ; Cells, Cultured ; Cytoplasm ; metabolism ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; drug effects ; metabolism ; Ouabain ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Sodium-Potassium-Exchanging ATPase

Result Analysis
Print
Save
E-mail