1.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
2.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
3.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
4.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
5.Long-term follow-up results of cytarabine-containing chemotherapy for acute promyelocytic leukemia
Young Hoon PARK ; Dae-Young KIM ; Yeung-Chul MUN ; Eun Kyung CHO ; Jae Hoon LEE ; Deog-Yeon JO ; Inho KIM ; Sung-Soo YOON ; Seon Yang PARK ; Byoungkook KIM ; Soo-Mee BANG ; Hawk KIM ; Young Joo MIN ; Jae Hoo PARK ; Jong Jin SEO ; Hyung Nam MOON ; Moon Hee LEE ; Chul Soo KIM ; Won Sik LEE ; So Young CHONG ; Doyeun OH ; Dae Young ZANG ; Kyung Hee LEE ; Myung Soo HYUN ; Heung Sik KIM ; Sung-Hyun KIM ; Hyukchan KWON ; Hyo Jin KIM ; Kyung Tae PARK ; Sung Hwa BAE ; Hun Mo RYOO ; Jung Hye CHOI ; Myung-Ju AHN ; Hwi-Joong YOON ; Sung-Hyun NAM ; Bong-Seog KIM ; Chu-Myong SEONG
The Korean Journal of Internal Medicine 2022;37(4):841-850
Background/Aims:
We evaluated the feasibility and long-term efficacy of the combination of cytarabine, idarubicin, and all-trans retinoic acid (ATRA) for treating patients with newly diagnosed acute promyelocytic leukemia (APL).
Methods:
We included 87 patients with newly diagnosed acute myeloid leukemia and a t(15;17) or promyelocytic leukemia/retinoic acid receptor alpha (PML-RARα) mutation. Patients received 12 mg/m2/day idarubicin intravenously for 3 days and 100 mg/m2/day cytarabine for 7 days, plus 45 mg/m2/day ATRA. Clinical outcomes included complete remission (CR), relapse-free survival (RFS), overall survival (OS), and the secondary malignancy incidence during a 20-year follow-up.
Results:
The CR, 10-year RFS, and 10-year OS rates were 89.7%, 94.1%, and 73.8%, respectively, for all patients. The 10-year OS rate was 100% for patients that achieved CR. Subjects were classified according to the white blood cell (WBC) count in peripheral blood at diagnosis (low-risk, WBC < 10,000/mm3; high-risk, WBC ≥ 10,000/mm3). The low-risk group had significantly higher RFS and OS rates than the high-risk group, but the outcomes were not superior to the current standard treatment (arsenic trioxide plus ATRA). Toxicities were similar to those observed with anthracycline plus ATRA, and higher than those observed with arsenic trioxide plus ATRA. The secondary malignancy incidence after APL treatment was 2.7%, among the 75 patients that achieved CR, and 5.0% among the 40 patients that survived more than 5 years after the APL diagnosis.
Conclusions
Adding cytarabine to anthracycline plus ATRA was not inferior to anthracycline plus ATRA alone, but it was not comparable to arsenic trioxide plus ATRA. The probability of secondary malignancy was low.
6.Effects of Non-Pharmacological Interventions on Respiratory Viruses Other Than SARS-CoV-2: Analysis of Laboratory Surveillance and Literature Review From 2018 to 2021
Hye Jin SHI ; Nam Yee KIM ; Sun Ah EOM ; Myung Deok KIM-JEON ; Sung Suck OH ; Bag Sou MOON ; Mun Ju KWON ; Joong Sik EOM
Journal of Korean Medical Science 2022;37(21):e172-
Background:
Since the global coronavirus disease 2019 (COVID-19) pandemic, nonpharmacological interventions (NPIs) such as extensive and comprehensive hand hygiene, mask-wearing, and social distancing have been implemented globally. This study aimed to investigate changes in respiratory viruses other than severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that occurred following the implementation of these NPIs.
Methods:
From January 2018 to December 2021, influenza-like illness patient specimens and specimens from the Korea Influenza and Respiratory Viruses Surveillance System were analyzed at the Incheon Metropolitan City Institute of Public Health and Environment.Oropharyngeal or nasopharyngeal swab samples from respiratory infection patients were transferred in a virus transport medium at 4°C. After RNA or DNA extraction, respiratory virus-specific genes for human influenza virus (IFV), adenovirus (ADV), parainfluenza virus (PIV), respiratory syncytial virus (RSV), human rhinovirus (hRV), human coronavirus, human bocavirus, and human metapneumovirus were detected by individual real-time reverse transcription polymerase chain reaction.
Results:
A total 3,334 samples were collected. After NPI was implemented, the detection of respiratory viruses other than SARS-CoV-2 decreased overall. The yearly detection rate of respiratory viruses was decreased from 69.5% (399/574) in 2018 and 73.3% (505/689) in 2019 to 19.8% (206/1,043) in 2020 and 34.9% (365/1,028) in 2021. The epidemic was more prominent in respiratory viruses such as IFV and RSV, which were considered dominant viruses, especially those with viral envelopes. Among viruses that were not considered dominant, hRV showed no clear change before and after NPI, while PIV showed a rapid increase compared to the existing dominant viruses between October–December 2021, after the increase in the number of gatherings started at the end of September and the “Relaxing COVID19 and mitigation policy,” which was implemented on November 1.
Conclusion
NPI seems to have influenced the isolation and transmission of respiratory viruses in South Korea. In the future, additional studies focusing on the isolation and transmission patterns of respiratory viruses following NPI are needed.
7.Hard Ticks as Vectors Tested Negative for Severe Fever with Thrombocytopenia Syndrome in Ganghwa-do, Korea during 2019-2020
Kyoung JIN ; Yeon-Ja KOH ; Seong Kyu AHN ; Joonghee CHO ; Junghwan LIM ; Jaeyong SONG ; Jinyoung LEE ; Young Woo GONG ; Mun Ju KWON ; Hyung Wook KWON ; Young Yil BAHK ; Tong-Soo KIM
The Korean Journal of Parasitology 2021;59(3):281-289
This study aimed to characterize the seasonal abundance of hard ticks that transmit severe fever with thrombocytopenia syndrome virus from April to November 2019 and 2020 on Ganghwa-do, Incheon Metropolitan City, Korea. The ticks were collected at grassland, grave site, copse and mountain road using a collection trap method. The ixodid hard ticks comprising three species (Haemaphysalis longicornis, H. flava, and Ixodes nipponensis) collected were 6,622 in 2019 and 3,811 in 2020. H. longicornis was the most frequent (97.9% in 2019 and 96.0% in 2020), followed by H. flava (2.0% and 3.0% in 2019 and 2020, respectively) and I. nipponensis (less than 0.1%). Our study demonstrated that seasonal patterns of the tick populations examined for two years were totally unsimilar. The hard ticks tested using RT-qPCR were all negative for severe fever with thrombocytopenia syndrome virus.
8.Hard Ticks as Vectors Tested Negative for Severe Fever with Thrombocytopenia Syndrome in Ganghwa-do, Korea during 2019-2020
Kyoung JIN ; Yeon-Ja KOH ; Seong Kyu AHN ; Joonghee CHO ; Junghwan LIM ; Jaeyong SONG ; Jinyoung LEE ; Young Woo GONG ; Mun Ju KWON ; Hyung Wook KWON ; Young Yil BAHK ; Tong-Soo KIM
The Korean Journal of Parasitology 2021;59(3):281-289
This study aimed to characterize the seasonal abundance of hard ticks that transmit severe fever with thrombocytopenia syndrome virus from April to November 2019 and 2020 on Ganghwa-do, Incheon Metropolitan City, Korea. The ticks were collected at grassland, grave site, copse and mountain road using a collection trap method. The ixodid hard ticks comprising three species (Haemaphysalis longicornis, H. flava, and Ixodes nipponensis) collected were 6,622 in 2019 and 3,811 in 2020. H. longicornis was the most frequent (97.9% in 2019 and 96.0% in 2020), followed by H. flava (2.0% and 3.0% in 2019 and 2020, respectively) and I. nipponensis (less than 0.1%). Our study demonstrated that seasonal patterns of the tick populations examined for two years were totally unsimilar. The hard ticks tested using RT-qPCR were all negative for severe fever with thrombocytopenia syndrome virus.
9.Surveillance of Chigger Mite Vectors for Tsutsugamushi Disease in the Hwaseong Area, Gyeonggi-do, Republic of Korea, 2015
Young Yil BAHK ; Hojong JUN ; Seo Hye PARK ; Haneul JUNG ; Seung JEGAL ; Myung-Deok KIM-JEON ; Jong Yul ROH ; Wook-Gyo LEE ; Seong Kyu AHN ; Jinyoung LEE ; Kwangsig JOO ; Young Woo GONG ; Mun Ju KWON ; Tong-Soo KIM
The Korean Journal of Parasitology 2020;58(3):301-308
Owing to global climate change, the global resurgence of vector-borne infectious diseases and their potential to inflict widespread casualties among human populations has emerged as a pivotal burden on public health systems. Tsutsugamushi disease (scrub typhus) in the Republic of Korea is steadily increasing and was designated as a legal communicable disease in 1994. The disease is a mite-borne acute febrile disease most commonly contracted from October to December. In this study, we tried to determine the prevalence of tsutsugamushi disease transmitted by chigger mites living on rodents and investigated their target vector diversity, abundance, and distribution to enable the mapping of hotspots for this disease in 2015. A total of 5 species belonging to 4 genera (109 mites): Leptotrombidium scutellare 60.6%, L. pallidum 28.4% Neotrombicula tamiyai 9.2%, Euschoengastia koreaensis/0.9%), and Neoschoengastia asakawa 0.9% were collected using chigger mite collecting traps mimicking human skin odor and sticky chigger traps from April to November 2015. Chigger mites causing tsutsugamushi disease in wild rodents were also collected in Hwaseong for the zoonotic surveillance of the vector. A total of 77 rodents belonging to 3 genera: Apodemus agrarius (93.5%), Crocidura lasiura (5.2%), and Micromys minutus (1.3%) were collected in April, October, and November 2015. The most common mite was L. pallidum (46.9%), followed by L. scutellare (18.6%), and L. orientale (18.0%). However, any of the chigger mite pools collected from rodent hosts was tested positive for Orientia tsutsugamushi, the pathogen of tsutsugamushi disease, in this survey.
10.Monitoring Culicine Mosquitoes (Diptera: Culicidae) as a Vector of Flavivirus in Incheon Metropolitan City and Hwaseong-Si, Gyeonggi-Do, Korea, during 2019
Young Yil BAHK ; Seo Hye PARK ; Myung-Deok KIM-JEON ; Sung-Suck OH ; Haneul JUNG ; Hojong JUN ; Kyung-Ae KIM ; Jong Myong PARK ; Seong Kyu AHN ; Jinyoung LEE ; Eun-Jeong CHOI ; Bag-Sou MOON ; Young Woo GONG ; Mun Ju KWON ; Tong-Soo KIM
The Korean Journal of Parasitology 2020;58(5):551-558
The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquitoes or tick vectors and are etiological agents of acute zoonotic infections. The viruses are found around the world and account for significant cases of human diseases. We investigated population of culicine mosquitoes in central region of Korean Peninsula, Incheon Metropolitan City and Hwaseong-si. Aedes vexans nipponii was the most frequently collected mosquitoes (56.5%), followed by Ochlerotatus dorsalis (23.6%), Anopheles spp. (10.9%), and Culex pipiens complex (5.9%). In rural regions of Hwaseong, Aedes vexans nipponii was the highest population (62.9%), followed by Ochlerotatus dorsalis (23.9%) and Anopheles spp. (12.0%). In another rural region of Incheon (habitat of migratory birds), Culex pipiens complex was the highest population (31.4%), followed by Ochlerotatus dorsalis (30.5%), and Aedes vexans vexans (27.5%). Culex pipiens complex was the predominant species in the urban region (84.7%). Culicine mosquitoes were identified at the species level, pooled up to 30 mosquitoes each, and tested for flaviviral RNA using the SYBR Green-based RT-PCR and confirmed by cDNA sequencing. Three of the assayed 2,683 pools (989 pools without Anopheles spp.) were positive for Culex flaviviruses, an insect-specific virus, from Culex pipiens pallens collected at the habitats for migratory birds in Incheon. The maximum likelihood estimation (the estimated number) for Culex pipiens pallens positive for Culex flavivirus was 25. Although viruses responsible for mosquito-borne diseases were not identified, we encourage intensified monitoring and long-term surveillance of both vector and viruses in the interest of global public health.

Result Analysis
Print
Save
E-mail