1.Effect of the combination of alkaloids from Euodiae Fructus and berberine in Zuojin Pill on cytotoxicity in HepG2 cells.
Yadong GAO ; An ZHU ; Ludi LI ; Yingzi LI ; Qi WANG
Journal of Peking University(Health Sciences) 2025;57(5):926-933
OBJECTIVE:
To investigate the hepatotoxicity of alkaloids from Euodiae Fructus combined with berberine (BBR) in Zuojin Pill, and to preliminarily explore the possible detoxification mechanism of the combination components.
METHODS:
The combination ratio of components was determined by the maximum concentration (Cmax) of the chemical components in Zuojin Pill. HepG2 cell model was used to investigate the combined toxicity of the hepatotoxic components from Euodiae Fructus, such as evodiamine (EVO) or dehydroevodiamine (DHED), with BBR for 48 h. The experimental groups were set as follows: the vehicle control group, the EVO group, the DHED group, the BBR group, and the combination group of EVO or DHED with BBR. The cell counting kit-8 (CCK-8) method was used to determine the cell viability, and the combination index (CI) was used to determine the combined toxicity of the components. The alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydroge-nase (LDH), and alkaline phosphatase (ALP) activities as well as total bilirubin (TBIL) content in the cell culture supernatant were detected. The protein expression levels of bile acid transporters, such as bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2), were detected by Western blot. The intracellular malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in HepG2 cells were detected.
RESULTS:
Compared with EVO or DHED group, the combination of EVO 1 μmol/L with BBR 10 μmol/L or DHED 50 μmol/L with BBR 35 μmol/L significantly increased cell viability of HepG2 cells (P < 0.01), with CI values of 77.89 or 4.49, respectively, much greater than 1. Significant decreases in the activities of ALT, AST, LDH, ALP, and TBIL content in the cell culture supernatant were found in both combination groups (P < 0.05, P < 0.01). Compared with the EVO group, the combination of EVO with BBR upregulated the protein expression levels of BSEP and MRP2. Compared with the DHED group, the combination of DHED with BBR significantly downregulated the protein expression levels of BSEP and MRP2 (P < 0.01). Compared with EVO or DHED group, the combination of EVO or DHED with BBR significantly reduced the MDA content in HepG2 cells (P < 0.05, P < 0.01).
CONCLUSION
A certain ratio of BBR combined with EVO or DHED had an antagonistic effect on HepG2 cytotoxicity, which might be related to regulating the expression of bile acid transpor-ters, and reducing lipid peroxidation damage.
Humans
;
Hep G2 Cells
;
Berberine/pharmacology*
;
Drugs, Chinese Herbal/toxicity*
;
Evodia/chemistry*
;
Alkaloids/pharmacology*
;
Cell Survival/drug effects*
;
Multidrug Resistance-Associated Proteins/metabolism*
;
Multidrug Resistance-Associated Protein 2
;
Quinazolines
2.Influence of 6-shogaol potentiated on 5-fluorouracil treatment of liver cancer by promoting apoptosis and cell cycle arrest by regulating AKT/mTOR/MRP1 signalling.
Yi ZHANG ; Yong QU ; Yun-Zhong CHEN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(5):352-363
Currently, chemoresistance seriously attenuates the curative outcome of liver cancer. The purpose of our work was to investigate the influence of 6-shogaol on the inhibition of 5-fluorouracil (5-FU) in liver cancer. The cell viability of cancer cells was determined by MTT assay. Liver cancer cell apoptosis and the cell cycle were examined utilizing flow cytometry. Moreover, qRT-PCR and western blotting was used to analyse the mRNA and protein expression levels, respectively. Immunohistochemistry assays were used to examine multidrug resistance protein 1 (MRP1) expression in tumour tissues. In liver cancer cells, we found that 6-shogaol-5-FU combination treatment inhibited cell viability, facilitated G0/G1 cell cycle arrest, and accelerated apoptosis compared with 6-shogaol or 5-FU treatment alone. In cancer cells cotreated with 6-shogaol and 5-FU, AKT/mTOR pathway- and cell cycle-related protein expression levels were inhibited, and MRP1 expression was downregulated. AKT activation or MRP1 increase reversed the influence of combination treatment on liver cancer cell viability, apoptosis and cell cycle arrest. The inhibition of AKT activation to the anticancer effect of 6-shogaol-5-FU could be reversed by MRP1 silencing. Moreover, our results showed that 6-shogaol-5-FU combination treatment notably inhibited tumour growth in vivo. In summary, our data demonstrated that 6-shogaol contributed to the curative outcome of 5-FU in liver cancer by inhibiting the AKT/mTOR/MRP1 signalling pathway.
ATP Binding Cassette Transporter, Subfamily B, Member 1
;
Apoptosis
;
Catechols
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Cell Line, Tumor
;
Cell Proliferation
;
Drug Resistance, Neoplasm
;
Fluorouracil/pharmacology*
;
Humans
;
Liver Neoplasms/genetics*
;
Multidrug Resistance-Associated Proteins
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
3.Pharmacokinetics mechanism of ABC efflux proteins-mediated seven features of compatibility.
Shen-Shen YANG ; An-Li LIU ; Lan-Lan SHAN ; Tong-Chun ZENG ; Qian ZHOU ; Yu-Bo LI
China Journal of Chinese Materia Medica 2018;43(4):676-683
ABC efflux proteins are a kind of transporters mediating diversified endogenous and exogenous efflux protein substrates across the plasma membrane by depending on the chemical energy released by ATP hydrolysis. As a vitally important functional membrane, it is widely found in various tissues and organs. The drug changes the expressions and/or functions of the transport proteins, which will affect the disposal process of substrate drugs corresponding to transporters , and finally lead to the pharmacokinetic interactions. The efflux proteins take part in the absorption, distribution, metabolism and excretion of drugs, and mainly consist of P-glycoprotein(P-gp), multidrug resistance associated protein(MRP) and breast cancer resistance protein(BCRP). The induction effect or inhibition effect of drugs on efflux protein plays a greatly significant role in the drug interaction produced by the compatibility of traditional Chinese medicine, which may be one of the important mechanisms of the theory of seven features of compatibility. In this article, the effects of seven features of compatibility on the ABC efflux transporters were reviewed, in order to reveal the roles of efflux protein in the herb-pairs compatibility, and provide new ideas for the mechanism and rationality of herb compatibility.
ATP-Binding Cassette Transporters
;
metabolism
;
Drug Interactions
;
Humans
;
Medicine, Chinese Traditional
;
Multidrug Resistance-Associated Proteins
;
metabolism
;
Plant Preparations
;
pharmacology
4.Reversal of multidrug resistance by icaritin in doxorubicin-resistant human osteosarcoma cells.
Zhen-Dong WANG ; Rui-Zhi WANG ; Yuan-Zheng XIA ; Ling-Yi KONG ; Lei YANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(1):20-28
Multidrug resistance (MDR) is one of the major obstacles in cancer chemotherapy. Our previous study has shown that icariin could reverse MDR in MG-63 doxorubicin-resistant (MG-63/DOX) cells. It is reported that icariin is usually metabolized to icariside II and icaritin. Herein, we investigated the effects of icariin, icariside II, and icaritin (ICT) on reversing MDR in MG-63/DOX cells. Among these compounds, ICT exhibited strongest effect and showed no obvious cytotoxicity effect on both MG-63 and MG-63/DOX cells ranging from 1 to 10 μmol·L. Furthermore, ICT increased accumulation of rhodamine 123 and 6-carboxyfluorescein diacetate and enhanced DOX-induced apoptosis in MG-63/DOX cells in a dose-dependent manner. Further studies demonstrated that ICT decreased the mRNA and protein levels of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1). We also verified that blockade of STAT3 phosphorylation was involved in the reversal effect of multidrug resistance in MG-63/DOX cells. Taken together, these results indicated that ICT may be a potential candidate in chemotherapy for osteosarcoma.
ATP Binding Cassette Transporter, Subfamily B
;
drug effects
;
genetics
;
metabolism
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Dose-Response Relationship, Drug
;
Doxorubicin
;
metabolism
;
pharmacology
;
toxicity
;
Drug Resistance, Multiple
;
drug effects
;
Drug Resistance, Neoplasm
;
drug effects
;
Flavonoids
;
pharmacology
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Multidrug Resistance-Associated Proteins
;
drug effects
;
genetics
;
metabolism
;
Osteosarcoma
;
drug therapy
;
metabolism
;
pathology
;
Phosphorylation
;
drug effects
;
Rhodamine 123
;
metabolism
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
metabolism
;
Triterpenes
;
pharmacology
5.Effect of Histone Deacetylase Inhibition on the Expression of Multidrug Resistance-associated Protein 2 in a Human Placental Trophoblast Cell Line.
Hong-Yu DUAN ; Dan MA ; Kai-Yu ZHOU ; ; Tao WANG ; Yi ZHANG ; ; Yi-Fei LI ; Jin-Lin WU ; Yi-Min HUA ; ; Chuan WANG ;
Chinese Medical Journal 2017;130(11):1352-1360
BACKGROUNDPlacental multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene in human, plays a significant role in regulating drugs' transplacental transfer rates. Studies on placental MRP2 regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the roles of epigenetic mechanisms in regulating placental drug transporters are still unclear. This study aimed to investigate the effect of histone deacetylases (HDACs) inhibition on MRP2 expression in the placental trophoblast cell line and to explore whether HDAC1/2/3 are preliminarily involved in this process.
METHODSThe human choriocarcinoma-derived trophoblast cell line (Bewo cells) was treated with the HDAC inhibitors-trichostatin A (TSA) at different concentration gradients of 0.5, 1.0, 3.0, and 5.0 μmol/L. Cells were harvested after 24 and 48 h treatment. Small interfering RNA (siRNA) specific for HDAC1/HDAC2/HDAC3 or control siRNA was transfected into cells. Total HDAC activity was detected by colorimetric assay kits. HDAC1/2/3/ABCC2 messenger RNA (mRNA) and protein expressions were determined by real-time quantitative polymerase chain reaction and Western-blot analysis, respectively. Immunofluorescence for MRP2 protein expression was visualized and assessed using an immunofluorescence microscopy and ImageJ software, respectively.
RESULTSTSA could inhibit total HDAC activity and HDAC1/2/3 expression in company with increase of MRP2 expression in Bewo cells. Reduction of HDAC1 protein level was noted after 24 h of TSA incubation at 1.0, 3.0, and 5.0 μmol/L (vs. vehicle group, all P < 0.001), accompanied with dose-dependent induction of MRP2 expression (P = 0.045 for 1.0 μmol/L, P = 0.001 for 3.0 μmol/L, and P < 0.001 for 5.0 μmol/L), whereas no significant differences in MRP2 expression were noted after HDAC2/3 silencing. Fluorescent micrograph images of MRP2 protein were expressed on the cell membrane. The fluorescent intensities of MRP2 in the control, HDAC2, and HDAC3 siRNA-transfected cells were week, and no significant differences were noticed among these three groups (all P > 0.05). However, MRP2 expression was remarkably elevated in HDAC1 siRNA-transfected cells, which displayed an almost 3.19-fold changes in comparison with the control siRNA-transfected cells (P < 0.001).
CONCLUSIONSHDACs inhibition could up-regulate placental MRP2 expression in vitro, and HDAC1 was probably to be involved in this process.
Cell Line ; Histone Deacetylase 1 ; metabolism ; Histone Deacetylase 2 ; metabolism ; Histone Deacetylase Inhibitors ; pharmacology ; Histone Deacetylases ; metabolism ; Humans ; Hydroxamic Acids ; pharmacology ; Microscopy, Fluorescence ; Multidrug Resistance-Associated Proteins ; genetics ; metabolism ; RNA, Messenger ; Trophoblasts ; cytology ; metabolism
6.Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis.
Protein & Cell 2017;8(8):623-627
Amino Acid Substitution
;
Drug Resistance, Multiple, Bacterial
;
physiology
;
Escherichia coli
;
physiology
;
Escherichia coli Proteins
;
genetics
;
metabolism
;
Membrane Potentials
;
physiology
;
Models, Biological
;
Multidrug Resistance-Associated Proteins
;
genetics
;
metabolism
;
Mutation, Missense
7.Effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on gene expression of renal transporters in mice.
Yi SUI ; Hong YANG ; Xing-zhong TIAN ; Jie LIU ; Jing-zhen SHI
China Journal of Chinese Materia Medica 2015;40(3):506-510
OBJECTIVETo study the effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on the gene expression of renal transporters in mice.
METHODHealthy male mice were given equivalent physiological saline, Zhusha Anshen pill (1.8 g · kg(-1), containing 0.17 g · kg(-1) of mercury), cinnabar (0.2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), high dose cinnabar (2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), HgS (0.2 g · kg(-1), containing 0.17 g · kg(-1) of mercury), HgCl2 (0.032 g · kg(-1), containing 0. 024 g · kg(-1) of mercury), MeHg (0.026 g · kg(-1), containing 0.024 g · kg(-1) of mercury), once daily, for 30 d, measuring body mass gain. 30 days later, the mice were sacrificed. The mercury accumulation in kidneys was detected with atomic fluorescence spectrometer. Expressions of Oat1, Oat2, Oat3, Mrp2, Mrp4, Urat1 were detected with RT-PCR.
RESULTCompared with the normal control group, a significant accumulation of Hg in kidney in HgCl2 and MeHg groups was observed (P <0.05), but these changes were not found in other groups. Compared with normal control group, mRNA expressions of Oat1 and Oat2 were evidently lower in HgCl2 and MeHg groups, but mRNA expressions of Mrp2 were apparently higher in HgCl2 group (P <0.05), mRNA expression of Mrp4 was significant higher in HgCl2 and MeHg groups, and mRNA expression of Urat1 was apparently lower in MeHg group.
CONCLUSIONHgCl2 and MeHg groups show significant difference from the normal group in mercury accumulation in kidneys and gene expression of kidney transporters, but with no difference between other groups and the normal group. Compared with HgCl2 and MeHg, cinnabar and its compounds could cause lower renal toxicity to mice.
Animals ; Carrier Proteins ; genetics ; Drugs, Chinese Herbal ; toxicity ; Gene Expression ; drug effects ; Kidney ; drug effects ; metabolism ; Male ; Mercuric Chloride ; toxicity ; Mercury Compounds ; toxicity ; Methylmercury Compounds ; toxicity ; Mice ; Multidrug Resistance-Associated Proteins ; genetics ; Organic Anion Transport Protein 1 ; genetics ; Organic Anion Transporters, Sodium-Independent ; genetics
8.Molecular mechanism of cisplatin to enhance the ability of TRAIL in reversing multidrug resistance in gastric cancer cells.
Xingchao ZHU ; Kaiguang ZHANG ; Email: ZKG@MEDMAIL.COM.CN. ; Qiaomin WANG ; Si CHEN ; Yawen GOU ; Yufang CUI ; Qin LI
Chinese Journal of Oncology 2015;37(6):404-411
OBJECTIVETo study the molecular mechanism of cisplatin to enhance the ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in reversing multidrug resistance in vincristine-resistant human gastric cancer SGC7901/VCR cells.
METHODSMTT assay was used to measure the 50% inhibiting concentration (IC₅₀) and cell survival in SGC7901 and SGC7901/VCR cells after different treatments. SGC7901/VCR cells were treated with different concentrations of DDP, different concentrations of TRAIL alone or in combination, and then the mRNA and protein levels of several genes were determined by RT-PCR, RT-qPCR and Western-blot analysis. After targeted silencing with specific siRNA and transfection of recombinant plasmid c-myc into the SGC7901/VCR cells, the mRNA and protein levels of DR4, DR5 and c-myc were determined by RT-PCR and Western-blot analysis.
RESULTSAfter combined treatment with TRAIL and DDP of the SGC7901/VCR cells, the IC₅₀ of VCR, DDP, ADM, and 5-Fu treatment was significantly decreased compared with the control group or TRAIL-treated group (P < 0.05). After treatment with 0, 10, 50 ng/ml TRAIL in combination with 0.4 µg/ml DDP, the SGC7901/VCR cells showed significantly higher activation of caspase 3, down-regulation of DNA-PKcs/Akt/GSK-3β signaling pathway, and higher inhibition of MDR1(P-gp) and MRP1 than those treated with TRAIL alone (P < 0.01 for all). The mRNA and protein levels of DR4, DR5, c-myc were significantly decreased after silencing c-myc with specific siRNA in the SGC7901/VCR cells (P < 0.01 for all), and were significantly increased after transfection of recombinant plasmid c-myc into the SGC7901/VCR cells (P < 0.01 foe all). After the treatment with 10 ng/ml TRAIL, 0.25 µg/ml DDP + 10 ng/ml TRAIL and 0.5 µg/ml DDP + 10 ng/ml TRAIL, the relative expression level of c-myc protein in the SGC7901/VCR cells was 0.314 ± 0.012, 0.735 ± 0.026, and 0.876 ± 0.028, respectively, and the relative expression of cytochrome C was 0.339 ± 0.036, 0.593 ± 0.020 and 0.735 ± 0.031, respectively, and the relative expression levels of DR4, DR5, active-caspase 3 and active-caspase 9 in the SGC7901/VCR cells were also increased along with increasing DDP concentrations.
CONCLUSIONSThe activation of DNA-PKcs/Akt/GSK-3β signaling pathway and high expression of MDR1 and MRP1 play an important role in the multi-drug resistance properties of SGC7901/VCR cells. After combining with TRAIL, DDP can enhance the expression of DR4 and DR5 through up-regulating c-myc and enhancing the activation of caspase 3 and caspase 9 by facilitating mitochondrial release of cytochrome C. It may be an important molecular mechanism of DDP-induced sensitization of TRAIL to reverse the multidrug resistancein SGC7901/VCR cells.
ATP-Binding Cassette, Sub-Family B, Member 1 ; metabolism ; Antineoplastic Agents ; administration & dosage ; pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; administration & dosage ; pharmacology ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Line, Tumor ; Cisplatin ; administration & dosage ; pharmacology ; Down-Regulation ; Drug Resistance, Multiple ; drug effects ; Drug Resistance, Neoplasm ; drug effects ; Fluorouracil ; administration & dosage ; pharmacology ; Formazans ; Genes, myc ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; Inhibitory Concentration 50 ; Multidrug Resistance-Associated Proteins ; metabolism ; Neoplasm Proteins ; metabolism ; Plasmids ; Proto-Oncogene Proteins c-myc ; metabolism ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; pharmacology ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; metabolism ; Stomach Neoplasms ; drug therapy ; pathology ; TNF-Related Apoptosis-Inducing Ligand ; administration & dosage ; pharmacology ; Tetrazolium Salts ; Transfection ; methods
9.Study of the relationship among expression of Survivin and MRP and the drug resistance in human nasopharyngeal carcinoma.
Ning YANG ; Lepan ZHU ; Tan TAN ; Chunyan HOU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(3):235-239
OBJECTIVE:
This study aimed to explore the relationship among expression of Survivin and MRP and drug resistance in NPC.
METHOD:
Expression of Survivin were detected by immunohistochemistry method in 45 cases of NPC and 24 cases of normal mucous membrane of nasopharynx (NMMN). The relationship between expression of Survivin and pathological factors in NPC were analysized. Expression of Survivin and MRP were detected in 31 patients of NPC with paclitaxel resistance and 20 patients of NPC without paclitaxel resistance. The relation- ship among the expression of Survivin or MRP and paclitaxel resistance in NPC were analysized. The paclitaxel resistance cell line, 5-8F-PTX(+); was established by a step-increased method. The expression of Survivin and MRP were detected by western blot in 5-8F-PTX(+) and 5-8F.
RESULT:
The positive were 71. 1% (32/45) in NPC and 8.33% (2/24) in NMMN. And there were significantly differences between them (P < .05). There were relationship among expression of Survivin and differentiation degree, lymph node metastasis, distant metastasis, and clinic stages of NPC. The positive were 75.9% (31/39) in moderately differentiated NPC and 16.7% (1/6) in lowly differentiated NPC, respectively. There were significantly differences between them (P < 0.05). The positive of Survivin were 83.9% (26/31) in NPC patients with paclitaxel resistance and 45.0% (9/20) in NPC patients without Paclitaxel resistance, respectively. There were significantly differences between them (P < 0.05). The positive of MRP were 87.1% (27/31) in NPC patients with paclitaxel resistance and 40.0% (8/20) in NPC patients without paclitaxel resistance, respectively. There were significantly differences between them (P < 0.05). There were positive correlation between the expression of Survivin and MRP in NPC patients with Paclitaxel resistance. The expression of Survivin and MRP were higher in 5-8F-PTX(+) than in 5-8F. The IC50 of paclitaxel, cDDP, 5-FU and Vincristine were significantly higher in 5-8F-PTX(+) than in 5-8F.
CONCLUSION
There were relationship among the expression of Survivin and difference, metastasis and TNM stages of NPC. Survivin may serves as a molecular marker for development and progress in NPC. There were relationship among the high expression of Survivin and MRP and increasing of drug resistance in NPC.
Antineoplastic Agents
;
pharmacology
;
Carcinoma
;
Cisplatin
;
Drug Resistance, Neoplasm
;
Fluorouracil
;
Humans
;
Immunohistochemistry
;
Inhibitor of Apoptosis Proteins
;
genetics
;
metabolism
;
Lymphatic Metastasis
;
Multidrug Resistance-Associated Proteins
;
genetics
;
metabolism
;
Nasopharyngeal Carcinoma
;
Nasopharyngeal Neoplasms
;
genetics
;
metabolism
;
Nasopharynx
;
metabolism
;
Paclitaxel
;
pharmacology
;
Survivin
;
Vincristine
10.The drug-drug interaction mediated by efflux transporters and CYP450 enzymes.
Acta Pharmaceutica Sinica 2014;49(5):590-595
Multidrug regimens and corresponding drug interactions cause many adverse reactions and treatment failures. Drug efflux transporters: P-glycoprotein (P-gp), multidrug resistance associated protein (MRP) and breast cancer resistance protein (BCRP) in conjunction with metabolizing enzymes (cytochrome P450, CYP450) are major factors in such interaction. In recent years, a large number of studies have shown that P-gp plays a role in the oxidative metabolism of its substrates that are also substrates of CYP3A4. Combined actions of P-gp and CYP3A could account in some part for the low oral bioavailability determined for many of these dual substrates. P-gp along with efflux transporters (MRP and BCRP) having overlapping substrate specificity plays critical role in drug disposition. The relationship between MRP or BCRP and CYP3A is similar to that between P-gp and CYP3A. In this paper, we summarize the classification of efflux transporters, the main metabolizing enzymes CYP3A, clinical significance interactions mediated by efflux transporters and CYP450 enzymes and in vitro studies.
ATP Binding Cassette Transporter, Sub-Family G, Member 2
;
ATP-Binding Cassette Transporters
;
metabolism
;
ATP-Binding Cassette, Sub-Family B, Member 1
;
metabolism
;
Biological Availability
;
Cytochrome P-450 CYP3A
;
metabolism
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Drug Interactions
;
Humans
;
Multidrug Resistance-Associated Proteins
;
metabolism
;
Neoplasm Proteins
;
metabolism
;
Substrate Specificity

Result Analysis
Print
Save
E-mail