1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
4.Effect of Shufeng Jiedu Capsules on Relieving Influenza Virus Pneumonia by Suppressing TLR/NF-κB Pathway in Respiratory Epithelial Cells
Zihan GENG ; Lei BAO ; Shan CAO ; Qiang ZHU ; Jun PAN ; Shuran LI ; Ronghua ZHAO ; Jing SUN ; Yanyan BAO ; Shaoqiu MU ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):61-68
ObjectiveTo investigate the possible mechanism of Shufeng Jiedu capsules (SFJD) in alleviating influenza A (H1N1) virus pneumonia and focus on its effect on Toll-like receptor (TLR) signaling pathway in respiratory epithelial cells. MethodsA mouse model of viral pneumonia was established via the A/PR/8/34 (PR8) strain of influenza A virus. Mice were randomly divided into a normal group, a PR8 infection (PR8) group, and an SFJD group (8.4 g·kg-1), with 10 mice in each group. The day of infection was designated as day 1. The SFJD group was administered intragastrically at a volume of 20 mL·kg-1 daily, while the normal and PR8 groups were given an equal volume of deionized water. Micro-computed tomography (Micro-CT) was performed on day 5, and the mice were dissected to collect their lungs, after which the lung index was calculated to verify the therapeutic effect of SFJD. Single-cell sequencing was used to analyze the differentially expressed genes in respiratory epithelial cells. Multiplex fluorescence immunohistochemistry was employed to detect the expression of TLR, tumor necrosis factor receptor-associated factor 6 (TRAF6), and myeloid differentiation factor 88 (MyD88) proteins in epithelial cell adhesion molecule (EpCAM)-positive cells, and the proportion of respiratory epithelial cells expressing TLR pathway proteins was calculated. Respiratory epithelial cells were then sorted by flow cytometry, and Western blot was used to detect the expression of TLR, MyD88, TRAF6, Toll-interleukin receptor domain-containing adaptor inducing interferon-β (TRIF), inhibitor of κB kinase α (IKKα), and nuclear factor-κB (NF-κB) in the sorted epithelial cells. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in lung tissue. ResultsAt the transcriptional level, SFJD reversed the expression of TLR signaling pathway genes in respiratory epithelial cells, downregulating multiple TLR signaling pathway-related genes (P<0.01). At the protein level, SFJD significantly reduced the proportion of respiratory epithelial cells expressing TLR3 (P<0.05), the expression levels of TLR2, TLR3, TLR4, TRIF, TRAF6, IKKα, and NF-κB in epithelial cells(P<0.05, P<0.01), as well as the levels of pro-inflammatory cytokines IL-1β and TNF-α in lung tissue (P<0.01). ConclusionSFJD may alleviate viral pneumonia by suppressing the expression of TLR in respiratory epithelial cells and their subsequent signaling cascades.
5.Exploration of basket trial design with Bayesian method and its application value in traditional Chinese medicine.
Si-Cun WANG ; Mu-Zhi LI ; Hai-Xia DANG ; Hao GU ; Jun LIU ; Zhong WANG ; Ya-Nan YU
China Journal of Chinese Materia Medica 2025;50(3):846-852
Basket trial, as an innovative clinical trial design concept, marks the transformation of medical research from the traditional large-scale and single-disease treatment to the precise and individualized treatment. By gradually incorporating the Bayesian method during development, the trial design becomes more scientific and reasonable and increases its efficiency. The fundamental principle of the Bayesian method is the utilization of prior knowledge in conjunction with new observational data to dynamically update the posterior probability. This flexibility enhances the basket trial's capacity to effectively adapt to variations during the research process. Consequently, it enables researchers to dynamically adjust research strategies based on accumulated data and improve the predictive accuracy regarding treatment responses. In addition, the design concept of the basket trial aligns with the traditional Chinese medicine(TCM) principle of "homotherapy for heteropathy". The principle of "homotherapy for heteropathy" emphasizes that under certain conditions, different diseases may have the same treatment. Similarly, basket trials allow using a uniform trial design across multiple diseases, offering enhanced operational and significant practical value in the realm of TCM, particularly within the context of syndrome-based disease research. By introducing basket trials, the design of TCM clinical studies will be more scientific and yield higher-quality evidence. This study systematically categorized various Bayesian methods and models utilized in basket trials, evaluated their strengths and weaknesses, and identified their appropriate application contexts, so as to offer a practical guide for designing basket trials in the realm of TCM.
Bayes Theorem
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Research Design
;
Clinical Trials as Topic/methods*
;
Drugs, Chinese Herbal/therapeutic use*
6.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
7.Predictive factors for hemodynamically significant patent ductus arteriosus in preterm infants and the construction of a nomogram prediction model.
Jun MU ; Shu-Shu LI ; Ai-Ling SU ; Shu-Ping HAN ; Jin-Gai ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(3):279-285
OBJECTIVES:
To explore the predictive factors for hemodynamically significant patent ductus arteriosus (hsPDA) in preterm infants and to construct a nomogram prediction model for hsPDA occurrence in this population.
METHODS:
A retrospective analysis was conducted on the clinical data of preterm infants with gestational age <32 weeks diagnosed with patent ductus arteriosus (PDA) who were delivered at Nanjing Women and Children's Healthcare Hospital from January 2020 to December 2022. The subjects were divided into an hsPDA group (52 cases) and a non-hsPDA group (176 cases) based on the presence of hsPDA. Univariate analysis and multivariate logistic regression analysis were performed to screen predictive variables regarding the general information of the infants at birth, maternal pregnancy and delivery conditions, and relevant indicators during hospitalization. A nomogram prediction model for hsPDA occurrence was constructed using R software in preterm infants. Internal validation was performed using the Bootstrap method. Finally, the predictive model was evaluated for calibration, discrimination ability, and clinical utility.
RESULTS:
Multivariate regression analysis showed that the ratio of the left atrium to aorta diameter (LA/AO), mode of delivery (vaginal), and duration of mechanical ventilation were independent predictive factors for hsPDA in preterm infants (P<0.05). Based on the results of univariate analysis and multivariate logistic regression analysis, variables used to construct the nomogram prediction model for hsPDA risk included: LA/AO ratio, mode of delivery (vaginal), duration of mechanical ventilation, 5-minute Apgar score, and the presence of neonatal respiratory distress syndrome requiring surfactant therapy. The area under the receiver operating characteristic curve for this model was 0.876 (95%CI: 0.824-0.927), and the calibrated curve was close to the ideal reference line, indicating good calibration. The Hosmer-Lemeshow test demonstrated that the model fit well, and the clinical decision curve was above the extreme curves.
CONCLUSIONS
The nomogram prediction model, constructed using five variables (LA/AO ratio, vaginal delivery, duration of mechanical ventilation, 5-minute Apgar score, and the presence of neonatal respiratory distress syndrome requiring surfactant therapy), has reference significance for predicting the occurrence of hsPDA in preterm infants and provides valuable guidance for the early clinical identification of hsPDA.
Humans
;
Ductus Arteriosus, Patent/etiology*
;
Nomograms
;
Female
;
Infant, Newborn
;
Infant, Premature
;
Retrospective Studies
;
Male
;
Hemodynamics
;
Logistic Models
;
Pregnancy
8.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
9.Current situation of clinical trial registration in acupuncture anesthesia: A scoping review.
Yue LI ; You-Ning LIU ; Zhen GUO ; Mu-En GU ; Wen-Jia WANG ; Yi ZHU ; Xiao-Jun ZHUANG ; Li-Ming CHEN ; Jia ZHOU ; Jing LI
Journal of Integrative Medicine 2025;23(3):256-263
BACKGROUND:
Modern acupuncture anesthesia is a combination of Chinese and Western medicine that integrates the theories of acupuncture with anesthesia. However, some clinical studies of acupuncture anesthesia lack specific descriptions of randomization, allocation concealment, and blinding processes, with subsequent systematic reviews indicating a risk of bias.
OBJECTIVE:
Clinical trial registration is essential for the enhancement of the quality of clinical trials. This study aims to summarize the status of clinical trial registrations for acupuncture anesthesia listed on the World Health Organization International Clinical Trials Registry Platform (ICTRP).
SEARCH STRATEGY:
We searched the ICTRP for clinical trials related to acupuncture anesthesia registered between January 1, 2001 and May 31, 2023. Additionally, related publications were retrieved from PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Wanfang Data. Registrations and publications were analyzed for consistency in trial design characteristics.
INCLUSION CRITERIA:
Clinical trials that utilized one of several acupuncture-related therapies in combination with pharmacological anesthesia during the perioperative period were eligible for this review.
DATA EXTRACTION AND ANALYSIS:
Data extracted from articles included type of surgical procedure, perioperative symptoms, study methodology, type of intervention, trial recruitment information, and publication information related to clinical enrollment.
RESULTS:
A total of 166 trials related to acupuncture anesthesia from 21 countries were included in the analysis. The commonly reported symptoms in the included studies were postoperative nausea and vomiting (19.9%) and postoperative pain (13.3%). The concordance between the publications and the trial protocols in the clinical registry records was poor, with only 31.7% of the studies being fully compatible. Inconsistency rates were high for sample size (39.0%, 16/41), blinding (36.6%, 15/41), and secondary outcome indicators (24.4%, 10/41).
CONCLUSION
The volume of acupuncture anesthesia clinical trials registered in international trial registries over the last 20 years is low, with insufficient disclosure of results. Postoperative nausea and vomiting as well as postoperative pain, are the most investigated for acupuncture intervention. Please cite this article as: Li Y, Liu YN, Guo Z, Gu ME, Wang WJ, Zhu Y, Zhuang XJ, Chen LM, Zhou J, Li J. Current situation of clinical trial registration in acupuncture anesthesia: A scoping review. J Integr Med. 2025; 23(3): 256-263.
Humans
;
Acupuncture Analgesia
;
Acupuncture Therapy
;
Anesthesia
;
Clinical Trials as Topic
;
Registries
10.Interpretation of the UK screening and treatment of retinopathy of prematurity updated 2022 guidelines
Xiao-Yan DONG ; Jia-Zhi LI ; Ke-Ren LUO ; Jun TANG ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2024;26(5):437-443
The UK screening and treatment of retinopathy of prematurity(ROP)updated 2022 guidelines were developed by a multidisciplinary guideline development group from the Royal College of Paediatrics and Child Health and the Royal College of Ophthalmologists,following the standards of the National Institute for Health and Care Excellence.They were published on the websites of the Royal College of Paediatrics and Child Health and the Royal College of Ophthalmologists in March 2022,and formally published in Early Human Development in March 2023.The guidelines provide evidence-based recommendations for the screening and treatment of ROP.The most significant change in the 2022 updated version compared to the previous guidelines is the lowering of the gestational age screening criterion to below 31 weeks.The treatment section covers treatment indications,timing,methods,and follow-up visits of ROP.This article interprets the guidelines and compares them with ROP guidelines/consensus in China,providing a reference for domestic peers.

Result Analysis
Print
Save
E-mail