1.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
2.Reference values of carotid intima-media thickness and arterial stiffness in Chinese adults based on ultrasound radio frequency signal: A nationwide, multicenter study
Changyang XING ; Xiujing XIE ; Yu WU ; Lei XU ; Xiangping GUAN ; Fan LI ; Xiaojun ZHAN ; Hengli YANG ; Jinsong LI ; Qi ZHOU ; Yuming MU ; Qing ZHOU ; Yunchuan DING ; Yingli WANG ; Xiangzhu WANG ; Yu ZHENG ; Xiaofeng SUN ; Hua LI ; Chaoxue ZHANG ; Cheng ZHAO ; Shaodong QIU ; Guozhen YAN ; Hong YANG ; Yinjuan MAO ; Weiwei ZHAN ; Chunyan MA ; Ying GU ; Wu CHEN ; Mingxing XIE ; Tianan JIANG ; Lijun YUAN
Chinese Medical Journal 2024;137(15):1802-1810
Background::Carotid intima-media thickness (IMT) and diameter, stiffness, and wave reflections, are independent and important clinical biomarkers and risk predictors for cardiovascular diseases. The purpose of the present study was to establish nationwide reference values of carotid properties for healthy Chinese adults and to explore potential clinical determinants.Methods::A total of 3053 healthy Han Chinese adults (1922 women) aged 18-79 years were enrolled at 28 collaborating tertiary centers throughout China between April 2021 and July 2022. The real-time tracking of common carotid artery walls was achieved by the radio frequency (RF) ultrasound system. The IMT, diameter, compliance coefficient, β stiffness, local pulse wave velocity (PWV), local systolic blood pressure, augmented pressure (AP), and augmentation index (AIx) were then automatically measured and reported. Data were stratified by age groups and sex. The relationships between age and carotid property parameters were analyzed by Jonckheere-Terpstra test and simple linear regressions. The major clinical determinants of carotid properties were identified by Pearson’s correlation, multiple linear regression, and analyses of covariance.Results::All the parameters of carotid properties demonstrated significantly age-related trajectories. Women showed thinner IMT, smaller carotid diameter, larger AP, and AIx than men. The β stiffness and PWV were significantly higher in men than women before forties, but the differences reversed after that. The increase rate of carotid IMT (5.5 μm/year in women and 5.8 μm/year in men) and diameter (0.03 mm/year in both men and women) were similar between men and women. For the stiffness and wave reflections, women showed significantly larger age-related variations than men as demonstrated by steeper regression slopes (all P for age by sex interaction <0.05). The blood pressures, body mass index (BMI), and triglyceride levels were identified as major clinical determinants of carotid properties with adjustment of age and sex. Conclusions::The age- and sex-specific reference values of carotid properties measured by RF ultrasound for healthy Chinese adults were established. The blood pressures, BMI, and triglyceride levels should be considered for clinical application of corresponding reference values.
3.Association of Polymorphisms in the 3'UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer
Chao HONG ; Xudong XIANG ; Yingfu LI ; Yang CAO ; Xueya CHEN ; Shuai LI ; Anhao XING ; Mu LIN ; Qianli MA
Journal of Kunming Medical University 2024;45(3):7-17
Objective To investigate the association between four single nucleotide polymorphisms(SNP)(rs9340 in MAPK1,rs14804 in NRAS,rs712 and rs7973450 in KRAS)in the 3'UTR of ERK1/2 signaling pathway-related genes and non-small cell lung cancer(NSCLC).Methods A total of 478 NSCLC patients and 480 healthy controls were enrolled in this study.Four SNPs were genotyped by using TaqMan assays.The association between the four SNPs and NSCLC was analyzed.Results The distribution frequency difference of the allele of rs9340 was statistically significant between the control group and the non-small cell squamous cell carcinoma(SCC)group(P = 0.009),suggesting that the G allele of rs9340 may be a protective factor for non-small cell lung squamous cell carcinoma(OR = 0.67,95%CI:0.50~0.91).In addition,in the<50 years age group,the distribution frequency difference of the allele of rs9340 was statistically significant between the control group and the NSCLC group(P = 5.07×10-4),indicating that the G allele of rs9340 may be a protective factor for NSCLC(OR = 0.46,95%CI:0.29~0.72).Conclusion The SNP rs9340 in MAPK1 may be associated with the risk of NSCLC.
4.Challenges in the study of self-assembled aggregates in decoction of traditional Chinese medicine: A preliminary review
Qi WANG ; Xiao-meng GUO ; Qian-kun NI ; Mei-jing LI ; Rui XU ; Xing-jie LIANG ; Mu-xin GONG
Acta Pharmaceutica Sinica 2024;59(1):94-104
Decoction is the most commonly used dosage form in the clinical treatment of traditional Chinese medicine (TCM). During boiling, the violent movement of various active ingredients in TCM creates molecular forces such as hydrogen bonding,
5. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG
6.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
7.Development of a three-dimensional digital children's acupuncture point visualization system of Mongolian medicine
Yuhang LIU ; Ruifen SUN ; Jiya Rigen MU ; Xing WANG ; Zhijun LI ; Yanan LIU ; Yunteng HAO ; Yongqiang CAI ; Shaojie ZHANG ; Kun LI
Chinese Journal of Tissue Engineering Research 2024;28(20):3223-3228
BACKGROUND:Nowadays,there are increasing reports on the digitization and visualization system of acupuncture points for adults in traditional Chinese medicine,and the digitization and visualization system of acupuncture points for children in traditional Chinese medicine and the simulation system of acupuncture manipulation for Mongolian medicine training have been reported.However,there are no reports on relevant systems for children in Mongolian medicine. OBJECTIVE:To develop a simulation system of acupuncture points for children in Mongolian medicine,in the hope that it can be used for clinical teaching,manipulation practice and research on acupuncture safety. METHODS:Based on the tomographic anatomical dataset of preschool boys,a three-dimensional(3D)digital virtual anatomical model of children with multiple internal organs and tissues was constructed by using PhotoShop.2021 and Digihuman Reconstruction System software.The relevant annotation information database of 27 acupoints such as Dinghui acupoint of Mongolian medicine was compiled by the Unity database language.The Mongolian gold needle and silver needle were selected to record the acupuncture point teaching video on the 3D printed head and neck resin model of children.In Unity3D software,children's anatomical model,acupoint annotation information database and acupuncture operation video were integrated and coded,and a 3D digital children's Mongolian acupuncture acupoint visualization system integrating simulation acupuncture training,clinical teaching and acupuncture safety research was successfully created. RESULTS AND CONCLUSION:This study was based on real children's specimens.In order to reduce the error of two-dimensional segmentation,the manual layer-by-layer segmentation section image method was used to ensure the accuracy of the 3D model to the greatest extent.The Digihuman Reconstruction System was used to extract and save the individual segmentation data while maximizing the accuracy of the 3D model.PhotoShop.2021 software was used to complete the 3D reconstruction of the outer skin of the head and neck of children and the internal bony structure,cervical spinal cord,blood vessels and nerves,muscles and ligaments.After 3D reconstruction,the basic morphology of each independent structure and the integrity of the overall contour were verified in MeshLab software and the final fine adjustment and anatomical position confirmation were conducted using 3-matic research 13.0 software.The real anatomical morphology of the head and neck of preschool children was successfully simulated and restored.Unity3D software was used to integrate the 3D model of children,acupuncture operation video and acupoint annotation database,and the 3D digital Mongolian acupuncture acupoint visualization system for children was successfully constructed.Based on the real continuous fault ultra-thin dataset of preschool boys in China,China's first 3D digitization and visualization system of acupuncture points in the head and neck of children in Mongolian medicine was developed.Compared with the previous acupuncture soft works,this system is more suitable for the anatomical morphological development characteristics of Asian children,and has a high value of application in the fields of research on the safety of acupuncture in Mongolian medicine,clinical teaching and acupuncture simulation training.
8.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
9.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
10.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.

Result Analysis
Print
Save
E-mail