1.Exploring the multifaceted relationship between walking and chronic low back pain in adults: Perceptions, experiences, barriers, facilitators, behaviors, and motivations - A systematic review and meta-aggregation protocol
Valentin Dones Ill ; Donald Manlapaz ; Hans Paolo Alarde ; Moira Aleah Francess Dulnuan ; Rudolph Kyle Elefante ; Janna Crystal Koa ; Viktoria Nicole Mendoa ; Adriel Quinones
Philippine Journal of Allied Health Sciences 2025;9(1):61-67
BACKGROUND
Walking is widely recognized for its benefits in pain management, disability reduction, and psychological well-being, primarily due to its cost-effectiveness and accessibility. However, comprehensive qualitative insights into the full extent of its benefits remain insufficient. Chronic low back pain (CLBP) significantly impairs daily activities, requiring a multifaceted intervention approach, as advocated by the Biopsychosocial (BPS) model and the International Classification of Functioning, Disability, and Health (ICF) framework.
OBJECTIVESThis systematic review aims to evaluate the perceptions and experiences related to walking among adults suffering from CLBP, understand the barriers and facilitators influencing walking behaviors, analyze behavioral patterns, and examine internal motivators for walking.
METHODSThis systematic review will include both published and unpublished qualitative studies with participants aged >18 with CLBP persisting > 3 months, where walking is utilized as the primary or secondary intervention. Databases, including PubMed, EBSCO Host, Science Direct, ProQuest, MEDLINE, Epistemonikos, Cochrane Database, and Web of Science, will be searched without language or year restrictions. The screening will involve an independent dual review of the title/abstract and full texts, followed by a critical appraisal. Data extraction and synthesis will employ a meta-aggregation approach, with findings assessed via the ConQual approach.
EXPECTED RESULTSSynthesized findings will guide evidence-based practice. Recommendations will provide actionable insights to address gaps in qualitative research on walking, promoting a holistic, patient-centered approach to treatment.
PROSPERO REGISTRATION NUMBERCRD42024509069.
Human ; Pain Management ; Adult ; Walking ; Social Factors
2.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
3.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
4.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
5.NFATc1 and RUNX2 expression on orthodontic tooth movement with gradually increasing force
I Gusti Aju Wahju Ardani ; Ndhuk Ratih Mustiqo Hati ; Erdiarti Dyah Wahyuningtyas
Acta Medica Philippina 2024;58(14):86-93
Background:
Orthodontic tooth movement occurs due to bone resorption and apposition on the pressure and tension side of the PDL. The transcription factors associated with osteoclast differentiation are NFATc1 while osteoblast differentiation is associated with RUNX2. The optimum force of orthodontic tooth movement can move the teeth to the desired position, without causing discomfort and tissue damage to the patient.
Objective:
This study aims to analyse the effect of gradually increasing force on orthodontic tooth movement (by evaluating the NFATc1 and RUNX2 expression) in rats.
Methods:
This research is an in vivo experimental study with a post-test control group design. Twenty-eight healthy male adult Wistar rats (Rattus novergicus) aged 4-5 months with body weights 200-250 g rats were divided into seven study groups. Treatment groups in this study are given the force (by applying a closed coil spring between the maxillary central incisor and the maxillary first molar) of 5 g, 5-10 g, 10 g, and 10-20 g with the duration of treatment in 14 and 28 days. After the treatment day was finished, the alveolar bone tissue was isolated and investigated by immunohistochemical methods.
Results:
Indicate a significant difference between the control and all treatment groups of NFATc1 (p=0.003; p=0.000; p:0.010; p=0.001; p=0.001; p=0.000) and RUNX2 with groups of 10 g/14 days, 10 g/28 days, 5 g/28 days, 10 g/14 days,10-20 g/28 days (p=0.001; p=0.000; p=0.000; p=0.017; p=0.014; p=0.000) values.
Conclusion
Gradually increasing force affects orthodontic tooth movement by inducing bone resorption (high expression of NFATc1) in the pressure area and bone apposition (high expression of RUNX2) in the tension area. Applying heavy force by initially applying light force could inhibit hyalinization.
Orthodontic Tooth Movement
;
Tooth Movement Techniques
6.Running towards the dream.
Chinese Journal of Pediatrics 2024;62(1):1-1
7.Chorea Hyperglycemia Basal Ganglia Syndrome: A case report of a rare diabetes complication
Cristina A. Dorado ; Neshreen J. Kingking ; Remirr Theodore P. Nolasco ; Meliza Dadua-Ecal ; Jay S. Fonte
Philippine Journal of Internal Medicine 2024;62(1):326-330
Introduction:
We present a patient with long-standing uncontrolled type 2 diabetes mellitus (T2 DM) who developed
sudden onset of choreiform movement, which rapidly resolved after insulin therapy and haloperidol.
Case Description:
A 53-year-old Filipino male, with T2DM and hypertension for more than 10 years, presented with sudden
onset of hyperkinetic, involuntary, non-patterned, continuous movements of the left upper and lower extremities.
Investigations revealed severe hyperglycemia without acidemia and ketonuria. Cranial computed tomography scan
showed hyperdensity on the right caudate and lentiform nuclei. On cranial magnetic resonance imaging, there was T1-
weighted hyperintense and T2 - weighted hypointense signal involving the right putamen, globus pallidus and caudate.
Cranial magnetic resonance angiography showed stenosis on the cavernous segment of the right internal carotid artery
(ICA), left ICA and middle cerebral artery (MCA) junction, the A1 segment of the left anterior communicating artery and
proximal P2 segments of the bilateral posterior cerebral arteries. The patient was managed with a basal-bolus insulin
regimen to control the blood glucose and haloperidol to manage the extrapyramidal symptoms. Consequently, there was
complete resolution of the involuntary movements.
Conclusion
This case illustrates the importance of a systematic approach to movement disorders and early recognition of
this rare diabetes complication known as chorea hyperglycemia basal ganglia syndrome or diabetic striatopathy.
Movement Disorders
;
Diabetes Complications
8.lncRNA AC005224.4/miR-140-3p/SNAI2 regulating axis facilitates the invasion and metastasis of ovarian cancer through epithelial-mesenchymal transition.
Tingchuan XIONG ; Yinghong WANG ; Yuan ZHANG ; Jianlin YUAN ; Changjun ZHU ; Wei JIANG
Chinese Medical Journal 2023;136(9):1098-1110
BACKGROUND:
Ovarian cancer is one of the most widespread malignant diseases of the female reproductive system worldwide. The plurality of ovarian cancer is diagnosed with metastasis in the abdominal cavity. Epithelial-mesenchymal transition (EMT) exerts a vital role in tumor cell metastasis. However, it remains unclear whether long non-coding RNA (lncRNA) are implicated in EMT and influence ovarian cancer cell invasion and metastasis. This study was designed to investigate the impacts of lncRNA AC005224.4 on ovarian cancer.
METHODS:
LncRNA AC005224.4, miR-140-3p, and snail family transcriptional repressor 2 ( SNAI2 ) expression levels in ovarian cancer and normal ovarian tissues were determined using real-time quantitative polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and Transwell (migration and invasion) assays were conducted to measure SKOV3 and CAOV-3 cell proliferation and metastasis. E-cadherin, N-cadherin, Snail, and Vimentin contents were detected using Western blot. Nude mouse xenograft assay was utilized to validate AC005224.4 effects in vivo . Dual-luciferase reporter gene assay confirmed the targeted relationship between miR-140-3p and AC005224.4 or SNAI2 .
RESULTS:
AC005224.4 and SNAI2 upregulation and miR-140-3p downregulation were observed in ovarian cancer tissues and cells. Silencing of AC005224.4 observably moderated SKOV3 and CAOV-3 cell proliferation, migration, invasion, and EMT process in vitro and impaired the tumorigenesis in vivo . miR-140-3p was a target of AC005224.4 and its reduced expression level was mediated by AC005224.4. miR-140-3p mimics decreased the proliferation, migration, and invasion of ovarian cancer cells. SNAI2 was identified as a novel target of miR-140-3p and its expression level was promoted by either AC005224.4 overexpression or miR-140-3p knockdown. Overexpression of SNAI2 also facilitated ovarian cancer cell viability and metastasis.
CONCLUSION
AC005224.4 was confirmed as an oncogene via sponging miR-140-3p and promoted SNAI2 expression, contributing to better understanding of ovarian cancer pathogenesis and shedding light on exploiting the novel lncRNA-directed therapy against ovarian cancer.
Animals
;
Mice
;
Humans
;
Female
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Ovarian Neoplasms/metabolism*
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Snail Family Transcription Factors/metabolism*
9.Decursin affects proliferation, apoptosis, and migration of colorectal cancer cells through PI3K/Akt signaling pathway.
Yi YANG ; Yan-E HU ; Mao-Yuan ZHAO ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(9):2334-2342
We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
bcl-2-Associated X Protein
;
Vimentin/metabolism*
;
Cell Proliferation
;
Signal Transduction
;
Apoptosis
;
Cell Line, Tumor
;
Colorectal Neoplasms/genetics*
;
Cadherins/genetics*
;
Cell Movement
10.A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system.
Guofeng XU ; Kai CHEN ; Ying YANG
Journal of Biomedical Engineering 2023;40(2):350-357
The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.
Humans
;
Biomechanical Phenomena
;
Gait
;
Lower Extremity
;
Foot
;
Gait Analysis
;
Reproducibility of Results


Result Analysis
Print
Save
E-mail