1.C/EBPβ-Lin28a positive feedback loop triggered by C/EBPβ hypomethylation enhances the proliferation and migration of vascular smooth muscle cells in restenosis.
Xiaojun ZHOU ; Shan JIANG ; Siyi GUO ; Shuai YAO ; Qiqi SHENG ; Qian ZHANG ; Jianjun DONG ; Lin LIAO
Chinese Medical Journal 2025;138(4):419-429
BACKGROUND:
The main cause of restenosis after percutaneous transluminal angioplasty (PTA) is the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). Lin28a has been reported to play critical regulatory roles in this process. However, whether CCAAT/enhancer-binding proteins β (C/EBPβ) binds to the Lin28a promoter and drives the progression of restenosis has not been clarified. Therefore, in the present study, we aim to clarify the role of C/EBPβ-Lin28a axis in restenosis.
METHODS:
Restenosis and atherosclerosis rat models of type 2 diabetes ( n = 20, for each group) were established by subjecting to PTA. Subsequently, the difference in DNA methylation status and expression of C/EBPβ between the two groups were assessed. EdU, Transwell, and rescue assays were performed to assess the effect of C/EBPβ on the proliferation and migration of VSMCs. DNA methylation status was further assessed using Methyltarget sequencing. The interaction between Lin28a and ten-eleven translocation 1 (TET1) was analysed using co-immunoprecipitation (Co-IP) assay. Student's t -test and one-way analysis of variance were used for statistical analysis.
RESULTS:
C/EBPβ expression was upregulated and accompanied by hypomethylation of its promoter in restenosis when compared with atherosclerosis. In vitroC/EBPβ overexpression facilitated the proliferation and migration of VSMCs and was associated with increased Lin28a expression. Conversely, C/EBPβ knockdown resulted in the opposite effects. Chromatin immunoprecipitation assays further demonstrated that C/EBPβ could directly bind to Lin28a promoter. Increased C/EBPβ expression and enhanced proliferation and migration of VSMCs were observed after decitabine treatment. Further, mechanical stretch promoted C/EBPβ and Lin28a expression accompanied by C/EBPβ hypomethylation. Additionally, Lin28a overexpression reduced C/EBPβ methylation via recruiting TET1 and enhanced C/EBPβ-mediated proliferation and migration of VSMCs. The opposite was noted in Lin28a knockdown cells.
CONCLUSION
Our findings suggest that the C/EBPβ-Lin28a axis is a driver of restenosis progression, and presents a promising therapeutic target for restenosis.
Animals
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Muscle, Smooth, Vascular/metabolism*
;
Rats
;
DNA Methylation/physiology*
;
CCAAT-Enhancer-Binding Protein-beta/genetics*
;
Male
;
Myocytes, Smooth Muscle/cytology*
;
Rats, Sprague-Dawley
;
RNA-Binding Proteins/genetics*
;
Cells, Cultured
;
Coronary Restenosis/metabolism*
2.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
3.SMUG1 promoted the progression of pancreatic cancer via AKT signaling pathway through binding with FOXQ1.
Zijian WU ; Wei WANG ; Jie HUA ; Jingyao ZHANG ; Jiang LIU ; Si SHI ; Bo ZHANG ; Xiaohui WANG ; Xianjun YU ; Jin XU
Chinese Medical Journal 2025;138(20):2640-2656
BACKGROUND:
Pancreatic cancer is a lethal malignancy prone to gemcitabine resistance. The single-strand selective monofunctional uracil DNA glycosylase (SMUG1), which is responsible for initiating base excision repair, has been reported to predict the outcomes of different cancer types. However, the function of SMUG1 in pancreatic cancer is still unclear.
METHODS:
Gene and protein expression of SMUG1 as well as survival outcomes were assessed by bioinformatic analysis and verified in a cohort from Fudan University Shanghai Cancer Center. Subsequently, the effect of SMUG1 on proliferation, cell cycle, and migration abilities of SMUG1 cells were detected in vitro . DNA damage repair, apoptosis, and gemcitabine resistance were also tested. RNA sequencing was performed to determine the differentially expressed genes and signaling pathways, followed by quantitative real-time polymerase chain reaction and Western blotting verification. The cancer-promoting effect of forkhead box Q1 (FOXQ1) and SMUG1 on the ubiquitylation of myelocytomatosis oncogene (c-Myc) was also evaluated. Finally, a xenograft model was established to verify the results.
RESULTS:
SMUG1 was highly expressed in pancreatic tumor tissues and cells, which also predicted a poor prognosis. Downregulation of SMUG1 inhibited the proliferation, G1 to S transition, migration, and DNA damage repair ability against gemcitabine in pancreatic cancer cells. SMUG1 exerted its function by binding with FOXQ1 to activate the Protein Kinase B (AKT)/p21 and p27 pathway. Moreover, SMUG1 also stabilized the c-Myc protein via AKT signaling in pancreatic cancer cells.
CONCLUSIONS
SMUG1 promotes proliferation, migration, gemcitabine resistance, and c-Myc protein stability in pancreatic cancer via protein kinase B signaling through binding with FOXQ1. Furthermore, SMUG1 may be a new potential prognostic and gemcitabine resistance predictor in pancreatic ductal adenocarcinoma.
Humans
;
Pancreatic Neoplasms/pathology*
;
Forkhead Transcription Factors/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation/physiology*
;
Mice
;
Uracil-DNA Glycosidase/genetics*
;
Female
;
Male
;
Gemcitabine
;
Mice, Nude
;
Apoptosis/physiology*
;
Deoxycytidine/analogs & derivatives*
;
Cell Movement/genetics*
4.Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation.
Lincong PAN ; Xinwei SUN ; Kun WANG ; Yupei CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(2):272-279
Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% ( P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet's 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Signal-To-Noise Ratio
;
Deep Learning
;
Algorithms
5.A signal sensing system for monitoring the movement of human respiratory muscle based on the thin-film varistor.
Yueyang YUAN ; Zhongping ZHANG ; Lixin XIE ; Haoxuan HUANG ; Wei LIU
Journal of Biomedical Engineering 2025;42(4):733-738
In order to accurately capture the respiratory muscle movement and extract the synchronization signals corresponding to the breathing phases, a comprehensive signal sensing system for sensing the movement of the respiratory muscle was developed with applying the thin-film varistor FSR402 IMS-C07A in this paper. The system integrated a sensor, a signal processing circuit, and an application program to collect, amplify and denoise electronic signals. Based on the respiratory muscle movement sensor and a STM32F107 development board, an experimental platform was designed to conduct experiments. The respiratory muscle movement data and respiratory airflow data were collected from 3 healthy adults for comparative analysis. In this paper, the results demonstrated that the method for determining respiratory phase based on the sensing the respiratory muscle movement exhibited strong real-time performance. Compared to traditional airflow-based respiratory phase detection, the proposed method showed a lead times ranging from 33 to 210 ms [(88.3 ± 47.9) ms] for expiration switched into inspiration and 17 to 222 ms [(92.9 ± 63.8) ms] for inspiration switched into expiration, respectively. When this system is applied to trigger the output of the ventilator, it will effectively improve the patient-ventilator synchrony and facilitate the ventilation treatment for patients with respiratory diseases.
Humans
;
Respiratory Muscles/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Respiration
;
Monitoring, Physiologic/methods*
;
Adult
6.Leukocyte-specific protein 1 (LSP1): A key regulator of cytoskeletal dynamics and leukocyte function.
Puyuan ZHU ; Jinyi GU ; Yuejun LUO ; Yaming XI
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):750-755
Leukocyte-specific protein 1 (LSP1) is an F-actin binding protein expressed in various leukocytes, including lymphocytes, mononuclear macrophages, and neutrophils. LSP1 is highly conserved across different species. Human LSP1 protein contains 339 amino acids, featuring a Ca2+ binding site in the acidic NH2-terminal region and multiple F-actin binding domains along with phosphorylatable sites in the basic COOH-terminal region. Under Ca2+ regulation, the COOH-terminal domain of LSP1 binds to F-actin to regulate cell movement and signal transduction. Additionally, LSP1 activates the mitogen-activated protein kinase (MAPK) signaling pathway through phosphorylation mediated by protein kinase C (PKC) and MAPK-activated protein kinase-2, thereby regulating leukocyte proliferation and chemotaxis. The main effects of LSP1 on leukocytes are as follows: LSP1 plays important roles in neutrophil and macrophage migration, affecting cell adhesion, polarization and movement. LSP1 also functions in endothelial cells to regulate leukocyte transendothelial migration. In addition, LSP1 regulates macrophage phagocytosis through interaction with myosin 1e. Moreover, LSP1 regulates leukocyte proliferation and differentiation and plays significant roles in the development of leukemia and other tumors. In summary, LSP1 regulates leukocyte morphology, movement and function through interactions with cytoskeletal and signaling proteins. This review provides a comprehensive summary of these aspects.
Humans
;
Leukocytes/cytology*
;
Animals
;
Cytoskeleton/metabolism*
;
Microfilament Proteins/physiology*
;
Cell Movement
;
Signal Transduction
7.HDAC2-mediated H3K27 acetylation promotes the proliferation and migration of hepatocellular carcinoma cells.
Shaohai TANG ; Baoming YANG ; Jiankun LI ; Lili ZHAO ; Yifan WANG ; Shunxiang WANG
Journal of Peking University(Health Sciences) 2025;57(5):884-894
OBJECTIVE:
To explore the specific mechanism of histone deacetylase 2 (HDAC2) mediated histone H3 lysine 27 acetylation (H3K27ac) modification in promoting the proliferation and migration of hepatocellular carcinoma cells.
METHODS:
Samples of 40 cases of hepatocellular carcinoma and paracancerous tissues resected from January 2021 to January 2023 were collected. The expressions of HDAC2 and H3K27ac in hepatocellular carcinoma, paracancerous tissues and cell lines were detected by immunohistochemistry and Western blotting. The correlation between the expression levels of HDAC2 and H3K27ac and the relationship between HDAC2 expression and clinicopathological characteristics of patients with hepatocellular carcinoma were analyzed. The proliferation, migration and invasion of Hep3B and HepG2 cells were determined by MTS, clone formation, scratch and Transwell experiments. The acetylation of H3K27 mediated by HDAC2 was verified by Western blotting, real-time fluorescence quantitative PCR (qRT-PCR) and chromatin immunoprecipitation high-throughput sequencing (ChIP-seq). In vivo xenotransplantation experiment, the tumorigenicity of cells in each group was measured, and the expression of proteins related to phosphoinositide 3-kinases/phosphatase and tensin homolog deleted on chromosome ten/protein kinase B/mammalian target of rapamycin (PI3K/PTEN/AKT/mTOR) signal pathway was detected.
RESULTS:
High expression of HDAC2 and low expression of H3K27ac were found in hepatocellular carcinoma tissues and cell lines (P < 0.05), and there was a negative correlation between them (r=-0.477, P=0.002). The expression of HDAC2 was related to tumor size, hepatitis B virus infection, TNM stage and portal vein tumor thrombus (P < 0.05). Compared with the sh-NC group of Hep3B and HepG2 cells, the proliferation, clone formation, migration and invasion ability of sh-HDAC2 group were decreased (P < 0.05). Compared with the Empty group, the HDAC2 group exhibited increased expression levels and activity of HDAC2, as well as enhanced cell proliferation, clone formation, migration, invasion ability, tumor volume and mass in vivo, and elevated expression levels of p-PI3K, p-AKT, and p-mTOR (P < 0.05). Conversely, the enrichment and expression levels of H3K27ac, along with the expression level of PTEN, were decreased (P < 0.05). In the iHDAC2 group, the expression levels and activity of HDAC2, as well as the proliferation, clone formation, migration, invasion ability, tumor volume and mass in vivo, and expression levels of p-PI3K, p-AKT, and p-mTOR were reduced (P < 0.05). Additionally, the expression levels of H3K27ac and PTEN were increased (P < 0.05). To validate the involvement of the PI3K/PTEN/AKT/mTOR signaling pathway in HDAC2-mediated regulation of malignant behaviors in liver cancer cells through H3K27ac, the PI3K activator 740Y-P was introduced. Compared with the iHDAC2 group, the iHDAC2+740Y-P group exhibited increased proliferation, clone formation, migration, invasion ability, tumor volume and mass in vivo, and elevated expression levels of p-PI3K, p-AKT, and p-mTOR (P < 0.05). Conversely, the expression level of PTEN was decreased (P < 0.05).
CONCLUSION
HDAC2 initiates PI3K/PTEN/AKT/mTOR signal pathway by mediating H3K27 acetylation, which promotes the occurrence and development of hepatocellular carcinoma.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Histone Deacetylase 2/physiology*
;
Cell Proliferation
;
Acetylation
;
Cell Movement
;
Histones/metabolism*
;
Animals
;
Hep G2 Cells
;
Male
;
Female
;
Mice
;
Cell Line, Tumor
;
Signal Transduction
;
Mice, Nude
;
PTEN Phosphohydrolase/metabolism*
;
Lysine/metabolism*
;
Middle Aged
8.Effects of lncRNA RP11-499E18.1 on the malignant biological behavior of ovarian cancer cells.
Journal of Central South University(Medical Sciences) 2025;50(1):1-10
OBJECTIVES:
Ovarian cancer is a common gynecologic malignancy, with poor prognosis in advanced stages. This study aimed to identify differentially expressed long noncoding RNA (lncRNA) associated with ovarian cancer prognosis and to explore the effects of lncRNA RP11-499E18.1 on the malignant biological behavior of ovarian cancer cells.
METHODS:
Ovarian cancer-related lncRNA datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed and prognostically relevant tumor-suppressive lncRNAs were screened using lncRNA sequencing combined with clinical data. Reverse transcription PCR (RT-PCR) was used to detect the expression of lncRNA RP11-499E18.1 in ovarian cancer tissues, adjacent normal tissues, the IOSE80 normal ovarian epithelial cell line, and various ovarian cancer cell lines. Fluorescence in situ hybridization (FISH) was performed to determine its subcellular localization. Ovarian cancer cell lines CaOV3 and SKOV3 were divided into 3 groups: a negative control (NC) group, a knockdown (si-RP11-499E18.1) group, and a overexpression (pcDNA-RP11-499E18.1) group. Methyl thiazolyl tetrazolium (MTT) and Transwell assays were used to assess the effects of lncRNA RP11-499E18.1 on cell proliferation and migration. Western blotting was used to evaluate its effect on epithelial-mesenchymal transition (EMT)-related molecules. BALB/c nude mice were injected with CaOV3 cells transfected with pcDNA-RP11-499E18.1 (experimental group) or empty vector (control group), and tumor growth was monitored. Immunohistochemistry was used to assess the expression of Caspase 3 and Ki67 in tumor tissues.
RESULTS:
LncRNA sequencing identified RP11-499E18.1 as a differentially expressed and associated with prognosis. GEO data analysis showed that low RP11-499E18.1 expression was correlated with shorter overall and progression-free survival (both P<0.05). Its expression was significantly lower in ovarian cancer tissues and cell lines compared to normal controls (P<0.05 or P<0.001), and it was localized in both the nucleus and cytoplasm. In CaOV3 and SKOV3 cells, proliferation rates increased significantly in the si-RP11-499E18.1 group and decreased in the pcDNA-RP11-499E18.1 group (P<0.05 or P<0.001). Cell migration was enhanced in the si-RP11-499E18.1 group and suppressed in the pcDNA-RP11-499E18.1 group. Overexpression increased E-cadherin and decreased vimentin expression, while knockdown had the opposite effect. Tumor volume in the mouse model was significantly smaller in the experimental group (P<0.001), with increased Caspase 3 and decreased Ki67 expression in tumor tissues (both P<0.05).
CONCLUSIONS
LncRNA RP11-499E18.1 inhibits proliferation, migration, and EMT of ovarian cancer cells, and its low expression is associated with poor prognosis.
Female
;
Humans
;
RNA, Long Noncoding/physiology*
;
Ovarian Neoplasms/pathology*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Mice, Nude
;
Cell Proliferation
;
Prognosis
;
Mice, Inbred BALB C
;
Gene Expression Regulation, Neoplastic
;
Cell Movement
;
Epithelial-Mesenchymal Transition
9.EZH2 promotes malignant biological behavior in esophageal squamous cell carcinoma via EMT.
Yuying JING ; Kaige YANG ; Yiting CHENG ; Tianping HUANG ; Sufang CHEN ; Kai CHEN ; Jianming HU
Journal of Central South University(Medical Sciences) 2025;50(2):155-166
OBJECTIVES:
Esophageal squamous cell carcinoma (ESCC) is characterized by complex pathogenesis and poor prognosis. In recent years, epithelial-mesenchymal transition (EMT) in tumor initiation and progression has attracted increasing attention. Enhancer of zeste homolog 2 (EZH2), which is aberrantly expressed in various tumors, may be closely related to the EMT process. This study aims to examine the expression and correlation of EZH2 and EMT markers in ESCC cells and tissues, evaluate the effects of EZH2 knockdown on ESCC cell proliferation, invasion, and migration, and explore how EZH2 contributes to the malignant biological behavior of ESCC.
METHODS:
Bioinformatics analyses were used to assess EZH2 expression levels in ESCC. Small interfering RNA was used to knock down EZH2 in ESCC cell lines EC109 and EC9706. Cell proliferation, invasion, and migration were evaluated using cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Protein and mRNA expression levels of EZH2, E-cadherin (E-cad), and vimentin (Vim) were detected by Western blotting and real time fluorogenic quantitative PCR (RT-qPCR), respectively. Immunohistochemical (IHC) staining was performed on 70 ESCC tissue samples and 40 paired adjacent normal tissues collected from the First Affiliated Hospital of Shihezi University between 2010 and 2016 to assess the expression of EZH2, E-cad, and Vim, and to analyze their associations with clinicopathological feature and patient prognosis.
RESULTS:
Bioinformatics analysis showed that EZH2 was highly expressed in ESCC (P<0.001), and high EZH2 expression was associated with worse prognosis (P<0.001). CCK-8, wound healing, and Transwell assays demonstrated that EZH2 knockdown significantly suppressed the proliferation, invasion, and migration of ESCC cells (P<0.001). In addition, Vim expression was significantly reduced, while E-cad expression was significantly increased at both protein and mRNA levels in EZH2-silenced cells (all P<0.05). IHC staining analysis revealed higher expression of EZH2 and Vim and lower expression of E-cad in ESCC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that low expression of EZH2 and Vim and high expression of E-cad were associated with longer survival (all P<0.05).
CONCLUSIONS
EZH2 promotes malignant biological behavior in ESCC by mediating EMT. Elevated EZH2 expression is associated with poor prognosis in ESCC patients.
Humans
;
Enhancer of Zeste Homolog 2 Protein/physiology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Epithelial-Mesenchymal Transition/genetics*
;
Esophageal Neoplasms/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cell Movement
;
Cadherins/genetics*
;
Vimentin/genetics*
;
Male
;
Female
;
Middle Aged
;
Neoplasm Invasiveness
;
Prognosis
;
RNA, Small Interfering/genetics*
;
Gene Expression Regulation, Neoplastic
10.Dentate Gyrus Morphogenesis is Regulated by an Autism Risk Gene Trio Function in Granule Cells.
Mengwen SUN ; Weizhen XUE ; Hu MENG ; Xiaoxuan SUN ; Tianlan LU ; Weihua YUE ; Lifang WANG ; Dai ZHANG ; Jun LI
Neuroscience Bulletin 2025;41(1):1-15
Autism Spectrum Disorders (ASDs) are reported as a group of neurodevelopmental disorders. The structural changes of brain regions including the hippocampus were widely reported in autistic patients and mouse models with dysfunction of ASD risk genes, but the underlying mechanisms are not fully understood. Here, we report that deletion of Trio, a high-susceptibility gene of ASDs, causes a postnatal dentate gyrus (DG) hypoplasia with a zigzagged suprapyramidal blade, and the Trio-deficient mice display autism-like behaviors. The impaired morphogenesis of DG is mainly caused by disturbing the postnatal distribution of postmitotic granule cells (GCs), which further results in a migration deficit of neural progenitors. Furthermore, we reveal that Trio plays different roles in various excitatory neural cells by spatial transcriptomic sequencing, especially the role of regulating the migration of postmitotic GCs. In summary, our findings provide evidence of cellular mechanisms that Trio is involved in postnatal DG morphogenesis.
Animals
;
Dentate Gyrus/metabolism*
;
Mice
;
Morphogenesis/physiology*
;
Neurons/pathology*
;
Cell Movement
;
Mice, Inbred C57BL
;
Autism Spectrum Disorder/pathology*
;
Mice, Knockout
;
Neural Stem Cells
;
Male
;
Neurogenesis
;
Autistic Disorder/genetics*

Result Analysis
Print
Save
E-mail