1.Precision therapy targeting CAMK2 to overcome resistance to EGFR inhibitors in FAT1 -mutated oral squamous cell carcinoma.
Yumeng LIN ; Yibo HUANG ; Bowen YANG ; You ZHANG ; Ning JI ; Jing LI ; Yu ZHOU ; Ying-Qiang SHEN ; Qianming CHEN
Chinese Medical Journal 2025;138(15):1853-1865
BACKGROUND:
Oral squamous cell carcinoma (OSCC) is a prevalent type of cancer with a high mortality rate in its late stages. One of the major challenges in OSCC treatment is the resistance to epidermal growth factor receptor (EGFR) inhibitors. Therefore, it is imperative to elucidate the mechanism underlying drug resistance and develop appropriate precision therapy strategies to enhance clinical efficacy.
METHODS:
To evaluate the efficacy of the combination of the Ca 2+ /calmodulin-dependent protein kinase II (CAMK2) inhibitor KN93 and EGFR inhibitors, we performed in vitro and in vivo experiments using two FAT atypical cadherin 1 ( FAT1 )-deficient (SCC9 and SCC25) and two FAT1 wild-type (SCC47 and HN12) OSCC cell lines. We assessed the effects of EGFR inhibitors (afatinib or cetuximab), KN93, or their combination on the malignant phenotype of OSCC in vivo and in vitro . The alterations in protein expression levels of members of the EGFR signaling pathway and SRY-box transcription factor 2 (SOX2) were analyzed. Changes in the yes-associated protein 1 (YAP1) protein were characterized. Moreover, we analyzed mitochondrial dysfunction. Besides, the effects of combination therapy on mitochondrial dynamics were also evaluated.
RESULTS:
OSCC with FAT1 mutations exhibited resistance to EGFR inhibitors treatment. The combination of KN93 and EGFR inhibitors significantly inhibited the proliferation, survival, and migration of FAT1 -mutated OSCC cells and suppressed tumor growth in vivo . Mechanistically, combination therapy enhanced the therapeutic sensitivity of FAT1 -mutated OSCC cells to EGFR inhibitors by modulating the EGFR pathway and downregulated tumor stemness-related proteins. Furthermore, combination therapy induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction and disrupted mitochondrial dynamics, ultimately resulting in tumor suppression.
CONCLUSION
Combination therapy with EGFR inhibitors and KN93 could be a novel precision therapeutic strategy and a potential clinical solution for EGFR-resistant OSCC patients with FAT1 mutations.
Humans
;
ErbB Receptors/metabolism*
;
Mouth Neoplasms/metabolism*
;
Cell Line, Tumor
;
Animals
;
Drug Resistance, Neoplasm/genetics*
;
Cadherins/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Mice
;
Mutation/genetics*
;
Mice, Nude
;
Protein Kinase Inhibitors/therapeutic use*
;
Cetuximab/pharmacology*
;
Afatinib/therapeutic use*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
2.Effects of LncRNA SNHG20 on epithelial mesenchymal transition and microtubule formation in human oral squamous cell carcinoma cells through targeted regulation of the miR-520c-3p/RAB22A pathway.
Minying MA ; Xiaoqin CHAO ; Yang ZHAO ; Guoting ZHAO
Journal of Peking University(Health Sciences) 2025;57(1):26-32
OBJECTIVE:
To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/RAB22A pathway.
METHODS:
After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, RAB22A mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group. Western blotting was used to detect the expression of N-cadherin, vimentin, and E-cadherin proteins in the OSCC cells. The morphology of HSC-3 cells was observed under microscope. Changes in the number of microtubules formed were detected. The effect of LncRNA SNHG20 on the growth of OSCC tumors and the expression levels of LncRNA SNHG20, miR-520c-3p and RAB22 A in the transplanted tumors were detected by nude mice tumorigenesis experiment.
RESULTS:
LncRNA SNHG20 and RAB22A mRNA were upregulated in the OSCC tissues and cells, while miR-520c-3p was downregulated (P < 0.05). There were binding sites between LncRNA SNHG20 and miR-520c-3p, RAB22A and miR-520c-3p, which had targeted regulation relationship. Compared with the sh-NC group, the sh-SNHG20 group had fewer stromal like cells, more epithelial like cells, incomplete microtubule structure, and fewer nodules. LncRNA SNHG20, RAB22A, N-Cadherin, and vimentin were downregulated, while miR-520c-3p and E-cadherin were upregulated (P < 0.05). Compared with the sh-SNHG20+anti-NC group, the sh-SNHG20+anti-miR-520c-3p group had a higher number of stromal like cells, a lower number of epithelioid cells, tighter microtubule arrangement, and more microtubule nodules. miR-520c-3p and E-cadherin were downregulated, while RAB22A, N-cadherin, and vimentin were upregulated (P < 0.05). The transplanted tumor of OSCC in sh-SNHG20 group was smaller and lower than that in sh-NC group. The expression levels of LncRNA SNHG20 and RAB22A in the transplanted tumor tissues were lower than those in sh-NC group, and the expression level of miR-520c-3p was higher than that in sh-NC group (P < 0.05).
CONCLUSION
LncRNA SNHG20 promotes epithelial-mesenchymal transition and microtubule formation in human oral squamous cell carcinoma cells by targeting the miR-520c-3p/RAB22A pathway. Inhibiting the expression of LncRNA SNHG20 can target and regulate the miR-520c-3p/RAB22A pathway to inhibit EMT and microtubule formation in OSCC cells.
Humans
;
RNA, Long Noncoding/genetics*
;
MicroRNAs/metabolism*
;
rab GTP-Binding Proteins/metabolism*
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Line, Tumor
;
Carcinoma, Squamous Cell/metabolism*
;
Animals
;
Microtubules/metabolism*
;
Mouth Neoplasms/genetics*
;
Mice, Nude
;
Mice
;
Gene Expression Regulation, Neoplastic
;
Mice, Inbred BALB C
3.Construction and application of oral squamous cell carcinoma organoid bank.
Shang XIE ; Luming WANG ; Xinyuan ZHANG ; Qiushi FENG ; Yangyang XIA ; Ziwei DAI ; Xiaofeng SHAN ; Zhigang CAI
Journal of Peking University(Health Sciences) 2025;57(5):847-851
Oral squamous cell carcinoma (OSCC) accounts for over 90% of oral malignancies, with more than 370 000 new cases and approximately 188 000 deaths annually worldwide. In China, there are roughly 65 000 new cases and 35 000 deaths each year, showing a significant upward trend compared with 2015 statistics. Despite continuous advancements in treatment modalities, the 5-year survival rate remains stagnant at 50%-60%, where tumor heterogeneity and therapy resistance persist as fundamental barriers to precision oncology. To address these critical challenges, this study established a standardized bioban-king protocol for OSCC patient-derived organoids (PDOs) (Patent: Method for constructing an oral squamous cell carcinoma organoid bank, ZL202311378598.3). Through groundbreaking optimization of culture media, enzymatic digestion kinetics, and stepwise cryopreservation, we achieved a biobanking success rate exceeding 95% and pioneered synchronous cultivation of matched primary tumors, lymph node metastases, and adjacent normal mucosa from individual patients, preserving spatial heterogeneity and stromal interactions. Leveraging this platform, we developed high-throughput drug screening: Quantified heterogeneity-driven differential chemoresponse using adenosine triphosphate (ATP)-based viability assays; We discovered resistance mechanisms: Identified sialylated cancer IgG (SIA-cIgG)-mediated cis-platin resistance (primary/secondary) through PTPN13 suppression, with anti-SIA-cIgG combination therapy demonstrating synergistic efficacy. Besides, we elucidated metastatic drivers: CRISPR-Cas9-edited organoids revealed WDR54 promoted metastasis via H3K4me3/H4K16ac epigenetic reprogramming, activating epithelial-mesenchymal plasticity (EMP) and inducing partial epithelial-mesenchymal transition (pEMT). This "holographic patient-mirroring" platform provided unprecedented resolution for OSCC precision therapy and had been formally incorporated into the Chinese Stomatological Association Technical Guidelines (Technical guideline for establishing patient-derived oral squamous cell carcinoma organoid banks, CHSA 2024-08). Future integration of immune-competent organoids, 3D-bioprinted vasculature, and multi-omics-AI systems will accelerate personalized oncology. These innovations will accelerate clinical translation of personalized therapeutic regimens, ultimately bridging the gap between bench research and bedside application.
Humans
;
Organoids/pathology*
;
Mouth Neoplasms/genetics*
;
Carcinoma, Squamous Cell/pathology*
;
Tissue Banks
;
Biological Specimen Banks
4.Lysine-specific demethylase 1 controls key OSCC preneoplasia inducer STAT3 through CDK7 phosphorylation during oncogenic progression and immunosuppression.
Amit Kumar CHAKRABORTY ; Rajnikant Dilip RAUT ; Kisa IQBAL ; Chumki CHOUDHURY ; Thabet ALHOUSAMI ; Sami CHOGLE ; Alexa S ACOSTA ; Lana FAGMAN ; Kelly DEABOLD ; Marilia TAKADA ; Bikash SAHAY ; Vikas KUMAR ; Manish V BAIS
International Journal of Oral Science 2025;17(1):31-31
Oral squamous cell carcinoma (OSCC) progresses from preneoplastic precursors via genetic and epigenetic alterations. Previous studies have focused on the treatment of terminally developed OSCC. However, the role of epigenetic regulators as therapeutic targets during the transition from preneoplastic precursors to OSCC has not been well studied. Our study identified lysine-specific demethylase 1 (LSD1) as a crucial promoter of OSCC, demonstrating that its knockout or pharmacological inhibition in mice reversed OSCC preneoplasia. LSD1 inhibition by SP2509 disrupted cell cycle, reduced immunosuppression, and enhanced CD4+ and CD8+ T-cell infiltration. In a feline model of spontaneous OSCC, a clinical LSD1 inhibitor (Seclidemstat or SP2577) was found to be safe and effectively inhibit the STAT3 network. Mechanistic studies revealed that LSD1 drives OSCC progression through STAT3 signaling, which is regulated by phosphorylation of the cell cycle mediator CDK7 and immunosuppressive CTLA4. Notably, LSD1 inhibition reduced the phosphorylation of CDK7 at Tyr170 and eIF4B at Ser422, offering insights into a novel mechanism by which LSD1 regulates the preneoplastic-to-OSCC transition. This study provides a deeper understanding of OSCC progression and highlights LSD1 as a potential therapeutic target for controlling OSCC progression from preneoplastic lesions.
STAT3 Transcription Factor/metabolism*
;
Animals
;
Histone Demethylases/genetics*
;
Phosphorylation
;
Mouth Neoplasms/immunology*
;
Mice
;
Carcinoma, Squamous Cell/immunology*
;
Disease Progression
;
Cyclin-Dependent Kinase-Activating Kinase
;
Precancerous Conditions/metabolism*
;
Humans
;
Cyclin-Dependent Kinases/metabolism*
;
Disease Models, Animal
5.LncRNA EUDAL shapes tumor cell response to hypoxia-induced constitutive EGFR activation and promotes chemoresistance in oral cancer.
Shengkai CHEN ; Zhenlin DAI ; Jianbo SHI ; Mengyu RUI ; Zhiyuan ZHANG ; Qin XU
International Journal of Oral Science 2025;17(1):64-64
Hypoxia and aberrant activation of epidermal growth factor receptor (EGFR) are considered important features of various malignancies. However, whether hypoxia can directly trigger EGFR activation and its clinical implications remain unclear. In this study, we demonstrated that in oral cancer, a typical hypoxic tumor, hypoxia can induce chronic but constitutive phosphorylation of wild-type EGFR in the absence of ligands. Oral cancer cell lines exhibit different EGFR phosphorylation responses to hypoxia. In hypoxic HN4 and HN6 cells, ubiquitination-mediated endocytosis, lysosomal sorting, and degradation lead to low levels of EGFR phosphorylation. However, in CAL-27 and HN30 cells, a novel HIF-1α-induced long noncoding RNA (lncRNA), EUDAL, can compete with the E3 ligase/adaptor complex c-Cbl/Grb2 for binding to EGFR, stabilizing phosphorylated EGFR (pEGFR) and resulting in sustained activation of EGFR and its downstream STAT3/BNIP3 signaling. STAT3/BNIP3-mediated autophagy leads to antitumor drug resistance. A high EUDAL/EGFR/STAT3/autophagy pathway activation predicts poor response to chemotherapy in oral cancer patients. Collectively, hypoxia can induce noncanonical ligand-independent EGFR phosphorylation. High EUDAL expression facilitates sustained EGFR phosphorylation in hypoxic tumor cells and leads to autophagy-related drug resistance.
Humans
;
ErbB Receptors/metabolism*
;
Mouth Neoplasms/pathology*
;
RNA, Long Noncoding/genetics*
;
Drug Resistance, Neoplasm/genetics*
;
Cell Line, Tumor
;
Phosphorylation
;
Signal Transduction
;
STAT3 Transcription Factor/metabolism*
;
Cell Hypoxia
;
Autophagy
;
Proto-Oncogene Proteins c-cbl/metabolism*
6.miR-302a-3p targeting lysosomal-associated membrane protein 5 inhibits the invasion and metastasis of oral squamous cell carcinoma.
Li YU ; Tiejun ZHOU ; Xiao WU ; Xinhong LIN ; Xiaoyan ZHANG ; Yongxian LAI ; Xinyue LIAO ; Hang SI ; Yun FENG ; Jie JIAN ; Yan FENG
West China Journal of Stomatology 2025;43(4):547-558
OBJECTIVES:
This study aimed to explore the expression of lysosomal-associated membrane protein 5 (LAMP5) and microRNA (miR)-302a-3p in oral squamous cell carcinoma (OSCC) and their functional mechanism on the invasion and metastasis of OSCC.
METHODS:
The expression of LAMP5 in OSCC and its sensitivity as a prognostic indicator were analyzed on the basis of The Cancer Genome Atlas database. Western blot, quantitative reverse transcription polymerase chain reaction, and cell immunocytochemistry were used to detect the expression of LAMP5 in OSCC tissues and cells. The effect of LAMP5 on the proliferation, migration, and invasion of OSCC cells was evaluated through cell counting kit-8, immunocytochemistry, migration, and invasion assays, respectively. The miRNA targeting prediction websites were used to predict the miR that regulates LAMP5 and verify the targeted regulatory effect of miR-302a-3p on LAMP5. The effect of LAMP5 knockdown on OSCC tumor growth was evaluated in a nude mouse tumorigenesis model.
RESULTS:
LAMP5 was highly expressed in OSCC tissues and cells. It showed high sensitivity in the early diagnosis of OSCC. LAMP5 knockdown significantly inhibited the proliferation, migration, and invasion of OSCC cells, whereas LAMP5 overexpression increased these cell activities. The expression of LAMP5 was regulated by miR-302a-3p. In vivo, LAMP5 knockdown significantly inhibited the growth of OSCC tumor.
CONCLUSIONS
LAMP5 promotes the malignant progression of OSCC by enhancing the proliferation, migration, and invasion of OSCC cells. The expression of LAMP5 is negatively regulated by miR-302a-3p.
MicroRNAs/metabolism*
;
Mouth Neoplasms/metabolism*
;
Humans
;
Animals
;
Carcinoma, Squamous Cell/genetics*
;
Neoplasm Invasiveness
;
Cell Proliferation
;
Mice, Nude
;
Cell Movement
;
Lysosomal Membrane Proteins/genetics*
;
Mice
;
Cell Line, Tumor
;
Neoplasm Metastasis
7.Expression and effect of heterogeneous nuclear ribonucleoprotein A2/B1 in tongue squamous cell carcinoma.
Journal of Central South University(Medical Sciences) 2023;48(5):633-640
OBJECTIVES:
Tongue squamous cell carcinoma (TSCC) is a common cancer in the oral and maxillofacial region, which seriously endangers people's life and health.Heterogeneous nuclear ribonucleoprotein A2/B1(hnRNP A2/B1) is an RNA-binding protein that regulates the expression of a variety of genes and participates in the occurrence and development of a variety of cancers. This study aims to investigate the role of hnRNP A2/B1 in TSCC progression.
METHODS:
The differential expression of hnRNP A2/B1 in oral squamous cell carcinoma (OSCC) and normal oral mucosa cells and tissues was analyzed based on the gene expression profiles of GSE146483 and GSE85195 in the Gene Expression Omnibus (GEO) database. The correlation between hnRNP A2/B1 expression and disease-free survival of TSCC patients was analyzed based on TSCC related chip of GSE4676. TSCC cancer and paracancerous tissue samples of 30 patients were collected in Hunan Cancer Hospital from July to December 2021. Real-time RT-PCR and Western blotting were used to verify the mRNA and protein expression of hnRNP A2/B1 in TSCC patients'samples, respectively. Human TSCC Tca-8113 cells were transfected with hnRNP A2/B1 empty vector (a sh-NC group), knockdown plasmid (a sh-hnRNP A2/B1 group), empty vector overexpression plasmid (an OE-NC group) and overexpression plasmid (an OE-hnRNP A2/B1 group), respectively. The knockdown or overexpression efficiency of hnRNP A2/B1 was detected by Western blotting. The proliferation activity of Tca-8113 cells was detected by cell counting kit-8 (CCK-8), and the apoptosis rate of Tca-8113 cells was detected by flow cytometry.
RESULTS:
Based on the analysis of OSCC-related chips of GSE146483 and GSE85195 in the GEO database, it was found that hnRNP A2/B1 was differentially expressed in the OSCC and normal oral mucosa cells and tissues (all P<0.01). Meanwhile, the analysis of TSCC related chip GSE4676 confirmed that the expression of hnRNP A2/B1 was negatively correlated with the disease-free survival of TSCC patients (P=0.006). The results of real-time RT-PCR and Western blotting showed that the relative expression levels of hnRNP A2/B1 mRNA and protein in TSCC tissues were significantly up-regulated compared with those in adjacent tissues (all P<0.01). The results of Western blotting showed that the expression level of hnRNP A2/B1 in Tca-8113 cells was significantly inhibited or promoted after knockdown or overexpression of hnRNP A2/B1 (all P<0.01). The results of CCK-8 and flow cytometry showed that inhibition of hnRNP A2/B1 expression in Tca-8113 cells reduced cell proliferation activity (P<0.05) and increased cell apoptic rate (P<0.01). Overexpression of hnRNP A2/B1 in Tca-8113 cells significantly increased cell proliferation (P<0.05) and decreased cell apoptosis (P<0.01).
CONCLUSIONS
HnRNP A2/B1 is a key factor regulating the proliferation and apoptosis of TSCC cells. Inhibition of hnRNP A2/B1 expression can reduce the proliferation activity of TSCC cells and promote the apoptosis of TSCC cells.
Humans
;
Carcinoma, Squamous Cell/genetics*
;
Sincalide/metabolism*
;
Tongue Neoplasms/genetics*
;
Mouth Neoplasms
;
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism*
;
RNA, Messenger
;
Tongue/metabolism*
;
Cell Line, Tumor
8.Effect of PAIP1 on the metastatic potential and prognostic significance in oral squamous cell carcinoma.
Neeti SWARUP ; Kyoung-Ok HONG ; Kunal CHAWLA ; Su-Jung CHOI ; Ji-Ae SHIN ; Kyu-Young OH ; Hye-Jung YOON ; Jae-Il LEE ; Sung-Dae CHO ; Seong-Doo HONG
International Journal of Oral Science 2022;14(1):9-9
Poly Adenylate Binding Protein Interacting protein 1 (PAIP1) plays a critical role in translation initiation and is associated with the several cancer types. However, its function and clinical significance have not yet been described in oral squamous cell carcinoma (OSCC) and its associated features like lymph node metastasis (LNM). Here, we used the data available from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) to analyze PAIP1 expression in oral cancer. The publicly available data suggests that PAIP1 mRNA and protein levels were increased in OSCC. The high PAIP1 expression was more evident in samples with advanced stage, LNM, and worse pattern of invasion. Moreover, the in vitro experiments revealed that PAIP1 knockdown attenuated colony forming, the aggressiveness of OSCC cell lines, decreasing MMP9 activity and SRC phosphorylation. Importantly, we found a correlation between PAIP1 and pSRC through the analysis of the IHC scores and CPTAC data in patient samples. Our findings suggest that PAIP1 could be an independent prognostic factor in OSCC with LNM and a suitable therapeutic target to improve OSCC patient outcomes.
Carcinoma, Squamous Cell/genetics*
;
Head and Neck Neoplasms
;
Humans
;
Lymphatic Metastasis
;
Mouth Neoplasms/pathology*
;
Peptide Initiation Factors/metabolism*
;
Prognosis
;
Proteomics
;
RNA-Binding Proteins/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
9.Expression of cyclophilin A in oral squamous cell carcinoma and its effect on cell proliferation and invasion.
Xiao-Yang XIA ; Fei FANG ; Yan LIU ; Chao CHE ; Jin-Juan KE ; Sheng-Jun JIANG
West China Journal of Stomatology 2021;39(2):164-169
OBJECTIVES:
To investigate the expression of cyclophilin A (CyPA) in oral squamous cell carcinoma (OSCC) and explore the effect of downregulating the expression of CyPA gene on the proliferation and invasion of SCC-25 cells.
METHODS:
A total of 77 cases of patients with OSCC were selected. The expression levels of CyPA proteins in OSCC and adjacent normal tissues were evaluated. SCC-25 cells were cultured and divided into the CyPA interference sequence group, negative control group, and blank group. The expression levels of CyPA mRNA and protein in cells were detected by using real-time fluorescent quantitative polymerase chain reaction and Western blot, respectively. Cell proliferation was detected by using methyl thiazolyl tetrazolium and plate colony formation assays. Cell invasion was detected by using Transwell assay.
RESULTS:
The positive expression rate of CyPA protein in OSCC tissues was 76.62%, which was higher than that in adjacent tissues (
CONCLUSIONS
The CyPA protein is highly expressed in OSCC tissues, and the downregulation of CyPA gene expression in SCC-25 cells can reduce cell proliferation and inhibit cell invasion.
Carcinoma, Squamous Cell/genetics*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cyclophilin A/genetics*
;
Gene Expression Regulation, Neoplastic
;
Head and Neck Neoplasms
;
Humans
;
Mouth Neoplasms/genetics*
;
Squamous Cell Carcinoma of Head and Neck
10.Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway.
Jin YANG ; Xueke SHI ; Miao YANG ; Jingjing LUO ; Qinghong GAO ; Xiangjian WANG ; Yang WU ; Yuan TIAN ; Fanglong WU ; Hongmei ZHOU
International Journal of Oral Science 2021;13(1):12-12
As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.
Cancer-Associated Fibroblasts/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glycolysis
;
Head and Neck Neoplasms
;
Humans
;
MicroRNAs/metabolism*
;
Mouth Neoplasms/genetics*
;
Phosphofructokinase-2/genetics*
;
RNA, Long Noncoding/genetics*
;
Signal Transduction
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail