1.Carcinoma buccal mucosa treated with definitive hypofractionated accelerated radiotherapy: a retrospective analysis of treatment outcomes.
Geethu BABU ; Rejnish RAVIKUMAR ; Malu RAFI ; Zuzaki SHARAFUDDIN ; Arun SHANKAR S ; Preethi Sara GEORGE ; Cessal Thommachan KAINICKAL ; Ramadas KUNNAMBATH
Singapore medical journal 2025;66(7):368-372
INTRODUCTION:
Oral cancer is a major public health concern in India. Both conventional and altered fractionation radiotherapy schedules have been used in curative treatment of oral cancer. This study aimed to retrospectively evaluate the clinical profile and treatment outcomes of patients with carcinoma buccal mucosa who underwent treatment with definitive hypofractionated accelerated radiotherapy.
METHODS:
A total of 517 patients treated from January 2011 to December 2016 were eligible for the analysis. All patients were treated with definitive hypofractionated accelerated radiotherapy schedule of 5,250 cGy in 15 fractions over 3 weeks. Survival estimates were generated using the Kaplan-Meier method.
RESULTS:
At a median follow-up of 77.4 months, 473 (91.5%) patients attained complete remission with radiation therapy. The 5-year disease-free survival (DFS) and overall survival (OS) rates were 69% and 80.5%, respectively. The 5-year OS for stage I, II, III and IVa tumours was 80.3%, 84.4%, 81.4% and 73.7%, respectively, and the DFS was 75.7%, 73.2%, 69.6% and 60.2%, respectively. Age >50 years was found to be a significant factor affecting DFS ( P = 0.026) and OS ( P = 0.048) in multivariate analysis. Fifty-three (10.3%) patients developed osteoradionecrosis of the mandible.
CONCLUSION
Excellent outcome could be achieved in less-aggressive, low-volume carcinoma of the buccal mucosa with radical accelerated hypofractionated radiotherapy. A radiotherapy schedule over a 3-week period is useful in high-volume centres.
Humans
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Mouth Neoplasms/mortality*
;
Mouth Mucosa/radiation effects*
;
Treatment Outcome
;
Aged
;
Adult
;
Radiation Dose Hypofractionation
;
Disease-Free Survival
;
India
;
Kaplan-Meier Estimate
;
Dose Fractionation, Radiation
;
Aged, 80 and over
2.Precision therapy targeting CAMK2 to overcome resistance to EGFR inhibitors in FAT1 -mutated oral squamous cell carcinoma.
Yumeng LIN ; Yibo HUANG ; Bowen YANG ; You ZHANG ; Ning JI ; Jing LI ; Yu ZHOU ; Ying-Qiang SHEN ; Qianming CHEN
Chinese Medical Journal 2025;138(15):1853-1865
BACKGROUND:
Oral squamous cell carcinoma (OSCC) is a prevalent type of cancer with a high mortality rate in its late stages. One of the major challenges in OSCC treatment is the resistance to epidermal growth factor receptor (EGFR) inhibitors. Therefore, it is imperative to elucidate the mechanism underlying drug resistance and develop appropriate precision therapy strategies to enhance clinical efficacy.
METHODS:
To evaluate the efficacy of the combination of the Ca 2+ /calmodulin-dependent protein kinase II (CAMK2) inhibitor KN93 and EGFR inhibitors, we performed in vitro and in vivo experiments using two FAT atypical cadherin 1 ( FAT1 )-deficient (SCC9 and SCC25) and two FAT1 wild-type (SCC47 and HN12) OSCC cell lines. We assessed the effects of EGFR inhibitors (afatinib or cetuximab), KN93, or their combination on the malignant phenotype of OSCC in vivo and in vitro . The alterations in protein expression levels of members of the EGFR signaling pathway and SRY-box transcription factor 2 (SOX2) were analyzed. Changes in the yes-associated protein 1 (YAP1) protein were characterized. Moreover, we analyzed mitochondrial dysfunction. Besides, the effects of combination therapy on mitochondrial dynamics were also evaluated.
RESULTS:
OSCC with FAT1 mutations exhibited resistance to EGFR inhibitors treatment. The combination of KN93 and EGFR inhibitors significantly inhibited the proliferation, survival, and migration of FAT1 -mutated OSCC cells and suppressed tumor growth in vivo . Mechanistically, combination therapy enhanced the therapeutic sensitivity of FAT1 -mutated OSCC cells to EGFR inhibitors by modulating the EGFR pathway and downregulated tumor stemness-related proteins. Furthermore, combination therapy induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction and disrupted mitochondrial dynamics, ultimately resulting in tumor suppression.
CONCLUSION
Combination therapy with EGFR inhibitors and KN93 could be a novel precision therapeutic strategy and a potential clinical solution for EGFR-resistant OSCC patients with FAT1 mutations.
Humans
;
ErbB Receptors/metabolism*
;
Mouth Neoplasms/metabolism*
;
Cell Line, Tumor
;
Animals
;
Drug Resistance, Neoplasm/genetics*
;
Cadherins/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Mice
;
Mutation/genetics*
;
Mice, Nude
;
Protein Kinase Inhibitors/therapeutic use*
;
Cetuximab/pharmacology*
;
Afatinib/therapeutic use*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
3.Clinical study on repair of oral and perioral tissue defects with facial artery perforator myomucosal flap in 8 cases.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1137-1142
OBJECTIVE:
To explore the technical key points and effectiveness of the facial artery perforator myomucosal flap (FAPMF) in repairing oral and perioral tissue defects.
METHODS:
Between June 2023 and December 2024, 8 patients with oral and perioral tissue defects were repaired with the FAPMF. There were 4 males and 4 females, with an average age of 57.6 years (range, 45-72 years). Among them, 4 cases had floor-of-mouth defects and 3 cases had buccal mucosa defects remaining after squamous cell carcinoma resection, and 1 case had lower lip defect caused by trauma. The size of tissue defects ranged from 4.5 cm×3.0 cm to 6.0 cm×5.0 cm. The preoperative mouth opening was (39.55±1.88) mm, and the preoperative swallowing score of the University of Washington Quality of Life Questionnaire (UW-QOL) was 64.64±8.47. Preoperatively, CT angiography and Doppler ultrasound were used to locate the perforator vessels. A myomucosal flap pedicled with the perioral perforators of the facial artery was designed, with the harvesting size ranging from 4.0 cm×2.5 cm to 6.5 cm×4.0 cm. The length of the vascular pedicle was 4.2-6.8 cm (mean, 5.2 cm). Postoperatively, FAPMF survival, complications, and functional recovery were observed.
RESULTS:
All 8 surgeries were successfully completed without conversion to other repair methods or complications such as facial nerve injury. The total operation time ranged from 110 to 180 minutes, with an average of 142.5 minutes; among this, the harvesting time of the FAPMF ranged from 35 to 65 minutes, with an average of 48.7 minutes. The intraoperative blood loss was 50-150 mL, with an average of 85.6 mL. All FAPMFs survived completely. One patient developed venous reflux disorder at 24 hours after operation, which relieved after conservative treatment. All patients were followed up 7-16 months (mean, 12.4 months). All FAPMFs achieved complete epithelialization at 3 months after operation, showing a similar soft texture to the surrounding mucosa. At 7 months after operation, the mouth opening was (39.11±1.79) mm, slightly lower than preoperative level, but the difference was not significant (P>0.05). The swallowing score of the UW-QOL was 63.78±8.31, which was significantly lower than preoperative score (P<0.05). The visual analogue scale (VAS) score for patient satisfaction was 7-10, with an average of 8.9.
CONCLUSION
The FAPMF has advantages such as reliable blood supply, high mucosal matching degree, and concealed donor site, making it an ideal option for repairing small and medium-sized oral and perioral tissue defects.
Humans
;
Male
;
Middle Aged
;
Female
;
Perforator Flap/blood supply*
;
Aged
;
Plastic Surgery Procedures/methods*
;
Mouth Neoplasms/surgery*
;
Mouth Mucosa/surgery*
;
Mouth/surgery*
;
Quality of Life
;
Face/surgery*
;
Treatment Outcome
;
Carcinoma, Squamous Cell/surgery*
;
Arteries/surgery*
4.LIM and calponin homology domains 1 may function as promising biological markers to aid in the prognostic prediction of oral squamous cell carcinoma.
Li XU ; Wen SHI ; Yuehua LI ; Yajun SHEN ; Shang XIE ; Xiaofeng SHAN ; Zhigang CAI
Journal of Peking University(Health Sciences) 2025;57(1):19-25
OBJECTIVE:
To explore the function of LIM and calponin homology domains 1 (LIMCH1) in the development and progression of oral squamous cell carcinoma (OSCC), along with their potential clinical applications.
METHODS:
By utilizing transcriptome sequencing data from two groups of oral squamous cell carcinoma patients, along with bioinformatics analytical techniques such as Gene Ontology (GO) and gene co-expression networks, we identified genes that might play a pivotal role in the pathogenesis of oral squamous cell carcinoma. We employed real-time quantitative PCR and Western blotting to validate the expression patterns of these genes across twelve patient tissue samples. Furthermore, we conducted CCK-8 assays, flow cytometry analyses, and scratch wound healing assays to assess the impact of key genes on the biological behaviors of both the Cal27 oral squamous cell carcinoma cell line and the potentially malignant DOK oral lesion cell line. Additionally, we examined correlations between these key genes and clinical disease parameters in 214 oral squamous cell carcinoma patients using The Cancer Genome Atlas (TCGA) data; gene set enrichment analysis (GSEA) analysis results were also incorporated to enhance our findings from real-time quantitative PCR and Western blotting regarding potential mechanisms underlying the action of these key genes.
RESULTS:
The integrated analysis of sequencing data and bioinformatics revealed that LIMCH1 exhibited significantly reduced mRNA (P < 0.001) and protein levels (P < 0.01) in the oral squamous cell carcinoma tissues compared with normal control tissues. In the Cal27 cells, the low LIMCH1 level group demonstrated a larger wound healing area within 24 hours than the control group (P < 0.01), enhanced proliferation capacity over 72 hours relative to the control group (P < 0.01), and an increased apoptosis rate within 24 hours compared with the high expression group (P < 0.05). However, no significant differences were observed between the low and high level groups in DOK cells. Furthermore, it was determined that low LIMCH1 level correlated with poor prognosis in the patients (P=0.013) and a higher lymph node metastasis rate (P < 0.05). Investigations into the potential mechanisms of action indicated that LIMCH1 did not influence the onset or progression of oral squamous cell carcinoma via the epithelial-mesenchymal transition pathway.
CONCLUSION
LIMCH1 level may function as a promising biomarker to aid in the prognostic assessment of oral squamous cell carcinoma; however, its precise mechanistic role requires further investigation.
Humans
;
Mouth Neoplasms/metabolism*
;
Prognosis
;
Carcinoma, Squamous Cell/metabolism*
;
Biomarkers, Tumor/metabolism*
;
LIM Domain Proteins/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Male
;
Female
5.Effects of LncRNA SNHG20 on epithelial mesenchymal transition and microtubule formation in human oral squamous cell carcinoma cells through targeted regulation of the miR-520c-3p/RAB22A pathway.
Minying MA ; Xiaoqin CHAO ; Yang ZHAO ; Guoting ZHAO
Journal of Peking University(Health Sciences) 2025;57(1):26-32
OBJECTIVE:
To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/RAB22A pathway.
METHODS:
After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, RAB22A mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group. Western blotting was used to detect the expression of N-cadherin, vimentin, and E-cadherin proteins in the OSCC cells. The morphology of HSC-3 cells was observed under microscope. Changes in the number of microtubules formed were detected. The effect of LncRNA SNHG20 on the growth of OSCC tumors and the expression levels of LncRNA SNHG20, miR-520c-3p and RAB22 A in the transplanted tumors were detected by nude mice tumorigenesis experiment.
RESULTS:
LncRNA SNHG20 and RAB22A mRNA were upregulated in the OSCC tissues and cells, while miR-520c-3p was downregulated (P < 0.05). There were binding sites between LncRNA SNHG20 and miR-520c-3p, RAB22A and miR-520c-3p, which had targeted regulation relationship. Compared with the sh-NC group, the sh-SNHG20 group had fewer stromal like cells, more epithelial like cells, incomplete microtubule structure, and fewer nodules. LncRNA SNHG20, RAB22A, N-Cadherin, and vimentin were downregulated, while miR-520c-3p and E-cadherin were upregulated (P < 0.05). Compared with the sh-SNHG20+anti-NC group, the sh-SNHG20+anti-miR-520c-3p group had a higher number of stromal like cells, a lower number of epithelioid cells, tighter microtubule arrangement, and more microtubule nodules. miR-520c-3p and E-cadherin were downregulated, while RAB22A, N-cadherin, and vimentin were upregulated (P < 0.05). The transplanted tumor of OSCC in sh-SNHG20 group was smaller and lower than that in sh-NC group. The expression levels of LncRNA SNHG20 and RAB22A in the transplanted tumor tissues were lower than those in sh-NC group, and the expression level of miR-520c-3p was higher than that in sh-NC group (P < 0.05).
CONCLUSION
LncRNA SNHG20 promotes epithelial-mesenchymal transition and microtubule formation in human oral squamous cell carcinoma cells by targeting the miR-520c-3p/RAB22A pathway. Inhibiting the expression of LncRNA SNHG20 can target and regulate the miR-520c-3p/RAB22A pathway to inhibit EMT and microtubule formation in OSCC cells.
Humans
;
RNA, Long Noncoding/genetics*
;
MicroRNAs/metabolism*
;
rab GTP-Binding Proteins/metabolism*
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Line, Tumor
;
Carcinoma, Squamous Cell/metabolism*
;
Animals
;
Microtubules/metabolism*
;
Mouth Neoplasms/genetics*
;
Mice, Nude
;
Mice
;
Gene Expression Regulation, Neoplastic
;
Mice, Inbred BALB C
6.Construction and application of oral squamous cell carcinoma organoid bank.
Shang XIE ; Luming WANG ; Xinyuan ZHANG ; Qiushi FENG ; Yangyang XIA ; Ziwei DAI ; Xiaofeng SHAN ; Zhigang CAI
Journal of Peking University(Health Sciences) 2025;57(5):847-851
Oral squamous cell carcinoma (OSCC) accounts for over 90% of oral malignancies, with more than 370 000 new cases and approximately 188 000 deaths annually worldwide. In China, there are roughly 65 000 new cases and 35 000 deaths each year, showing a significant upward trend compared with 2015 statistics. Despite continuous advancements in treatment modalities, the 5-year survival rate remains stagnant at 50%-60%, where tumor heterogeneity and therapy resistance persist as fundamental barriers to precision oncology. To address these critical challenges, this study established a standardized bioban-king protocol for OSCC patient-derived organoids (PDOs) (Patent: Method for constructing an oral squamous cell carcinoma organoid bank, ZL202311378598.3). Through groundbreaking optimization of culture media, enzymatic digestion kinetics, and stepwise cryopreservation, we achieved a biobanking success rate exceeding 95% and pioneered synchronous cultivation of matched primary tumors, lymph node metastases, and adjacent normal mucosa from individual patients, preserving spatial heterogeneity and stromal interactions. Leveraging this platform, we developed high-throughput drug screening: Quantified heterogeneity-driven differential chemoresponse using adenosine triphosphate (ATP)-based viability assays; We discovered resistance mechanisms: Identified sialylated cancer IgG (SIA-cIgG)-mediated cis-platin resistance (primary/secondary) through PTPN13 suppression, with anti-SIA-cIgG combination therapy demonstrating synergistic efficacy. Besides, we elucidated metastatic drivers: CRISPR-Cas9-edited organoids revealed WDR54 promoted metastasis via H3K4me3/H4K16ac epigenetic reprogramming, activating epithelial-mesenchymal plasticity (EMP) and inducing partial epithelial-mesenchymal transition (pEMT). This "holographic patient-mirroring" platform provided unprecedented resolution for OSCC precision therapy and had been formally incorporated into the Chinese Stomatological Association Technical Guidelines (Technical guideline for establishing patient-derived oral squamous cell carcinoma organoid banks, CHSA 2024-08). Future integration of immune-competent organoids, 3D-bioprinted vasculature, and multi-omics-AI systems will accelerate personalized oncology. These innovations will accelerate clinical translation of personalized therapeutic regimens, ultimately bridging the gap between bench research and bedside application.
Humans
;
Organoids/pathology*
;
Mouth Neoplasms/genetics*
;
Carcinoma, Squamous Cell/pathology*
;
Tissue Banks
;
Biological Specimen Banks
7.Progress of 3D Printing Technology in Resection and Reconstruction of Oral and Maxillofacial Tumors.
Chinese Journal of Medical Instrumentation 2025;49(5):514-519
Oral and maxillofacial tumors, due to their complex anatomical structures and vital physiological functions, pose significant risks, not only affecting patients' appearance and function but also potentially endangering their lives. Traditional tumor resection and reconstruction surgeries face challenges such as inadequate precision, long surgical durations, and unsatisfactory postoperative outcomes. In the treatment of oral and maxillofacial tumors, 3D printing technology can be used for preoperative planning, surgical guide plate production, and the design and manufacture of personalized prosthetics, providing new solutions for functional reconstruction after tumor resection. This article reviews the progress of 3D printing technology in the medical field and explores its potential value in the resection and reconstruction of oral and maxillofacial tumors, aiming to provide references for clinical practice and promote the further application and development of this technology in oral and maxillofacial surgery.
Printing, Three-Dimensional
;
Humans
;
Plastic Surgery Procedures/methods*
;
Mouth Neoplasms/surgery*
8.Lip and oral cancers in East Asia from 1990 to 2035: trends of disease burden and future projections.
Yitong LIU ; Ke ZHAO ; Xiaodong WANG
Journal of Southern Medical University 2025;45(7):1554-1562
OBJECTIVES:
To analyze the trends of disease burden of lip and oral cancers in East Asia from 1990 to 2021 and its future projections.
METHODS:
We used the Global Burden of Disease 2021 database to conduct a comprehensive analysis of disease burden data from China (including Taiwan Province of China), Japan, Republic of Korea, Democratic People's Republic of Korea and Mongolia. The data were stratified by age, gender and major risk factors, and a Bayesian age-period-cohort model was employed to predict the future trends.
RESULTS:
From 1990 to 2021, the burden of lip and oral cancers in East Asian countries exhibited a steady increase. Taiwan Province of China experienced the most significant increases in incidence, prevalence, mortality, and disability-adjusted life years (DALYs), while Mongolia saw a decline in both mortality and DALYs. In 2021, Taiwan Province of China reported the highest rates of lip and oral cancer incidence (27.50 per 100 000), prevalence (137.92 per 100 000), mortality (9.59 per 100 000), and DALYs (292.07 person-years per 100 000), particularly among male and elderly populations. Tobacco use and alcohol consumption significantly exacerbated the disease burden in Taiwan Province of China and Japan. Future projections indicate that the incidence and prevalence of lip and oral cancer in China (excluding Taiwan Province of China) will continue to rise, while their mortality rates are expected to decline in most regions, except for Taiwan Province of China and Democratic People's Republic of Korea.
CONCLUSIONS
By the year 2035, the disease burden of lip and oral cancers in East Asia is expected to continue to increase, especially in Taiwan Province of China. To address this challenge, it is essential to implement effective measures to control major risk factors, promote early screening, and ensure equitable distribution of healthcare resources.
Humans
;
Mouth Neoplasms/epidemiology*
;
Incidence
;
Lip Neoplasms/epidemiology*
;
Asia, Eastern/epidemiology*
;
Male
;
Disability-Adjusted Life Years
;
Prevalence
;
Female
;
Forecasting
;
Risk Factors
;
Cost of Illness
;
Middle Aged
;
Global Burden of Disease
;
Aged
;
Bayes Theorem
9.Cancer-Associated Fibroblasts Interact with Schwann Cells for Tumor Perineural Invasion by Oral Squamous Cell Carcinoma.
Xinwen ZHANG ; Yijia HE ; Shixin XIE ; Yuxian SONG ; Xiaofeng HUANG ; Qingang HU ; Yanhong NI ; Yi WANG ; Yong FU ; Liang DING
Neuroscience Bulletin 2025;41(6):1003-1020
Perineural invasion (PNI) by tumor cells is a key phenotype of highly-invasive oral squamous cell carcinoma (OSCC). Since Schwann cells (SCs) and fibroblasts maintain the physiological homeostasis of the peripheral nervous system, and we have focused on cancer-associated fibroblasts (CAFs) for decades, it's imperative to elucidate the impact of CAFs on SCs in PNI+ OSCCs. We describe a disease progression-driven shift of PNI- towards PNI+ during the progression of early-stage OSCC (31%, n = 125) to late-stage OSCC (53%, n = 97), characterized by abundant CAFs and nerve demyelination. CAFs inhibited SC proliferation/migration and reduced neurotrophic factors and myelin in vitro, and this involved up-regulated ER stress and decreased MAPK signals. Moreover, CAFs also aggravated the paralysis of the hind limb and PNI in vivo. Unexpectedly, leukemia inhibitory factor (LIF) was exclusively expressed on CAFs and up-regulated in metastatic OSCC. The LIF inhibitor EC330 restored CAF-induced SC inactivation. Thus, OSCC-derived CAFs inactivate SCs to aggravate nerve injury and PNI development.
Schwann Cells/metabolism*
;
Mouth Neoplasms/metabolism*
;
Humans
;
Cancer-Associated Fibroblasts/metabolism*
;
Animals
;
Carcinoma, Squamous Cell/metabolism*
;
Neoplasm Invasiveness/pathology*
;
Male
;
Female
;
Mice
;
Cell Movement/physiology*
;
Cell Proliferation/physiology*
;
Cell Line, Tumor
;
Leukemia Inhibitory Factor/metabolism*
;
Middle Aged
10.Host-microbe computational proteomic landscape in oral cancer revealed key functional and metabolic pathways between Fusobacterium nucleatum and cancer progression.
Camila Paz MUÑOZ-GREZ ; Mabel Angélica VIDAL ; Tamara Beatriz ROJAS ; Luciano Esteban FERRADA ; Felipe Andrés ZUÑIGA ; Agustin Andrés VERA ; Sergio Andrés SANHUEZA ; Romina Andrea QUIROGA ; Camilo Daniel CABRERA ; Barbara Evelyn ANTILEF ; Ricardo Andrés CARTES ; Milovan Paolo ACEVEDO ; Marco Andrés FRAGA ; Pedro Felipe ALARCÓN-ZAPATA ; Mauricio Alejandro HERNÁNDEZ ; Alexis Marcelo SALAS-BURGOS ; Francisco TAPIA-BELMONTE ; Milly Loreto YÁÑEZ ; Erick Marcelo RIQUELME ; Wilfredo Alejandro GONZÁLEZ ; Cesar Andrés RIVERA ; Angel Alejandro OÑATE ; Liliana Ivonne LAMPERTI ; Estefanía NOVA-LAMPERTI
International Journal of Oral Science 2025;17(1):1-1
Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood. In this study we investigate the main host-pathogen pathways in OSCC by computational proteomics and the mechanism behind cancer progression by the oral microbiome. The main host-pathogen pathways were analyzed in the secretome of biopsies from patients with OSCC and healthy controls by mass spectrometry. Then, functional assays were performed to evaluate the host-pathogen pathways highlighted in oral cancer. Host proteins associated with LPS response, cell migration/adhesion, and metabolism of amino acids were significantly upregulated in the human cancer proteome, whereas the complement cascade was downregulated in malignant samples. Then, the microbiome analysis revealed large number and variety of peptides from Fusobacterium nucleatum (F. nucleatum) in OSCC samples, from which several enzymes from the L-glutamate degradation pathway were found, indicating that L-glutamate from cancer cells is used as an energy source, and catabolized into butyrate by the bacteria. In fact, we observed that F. nucleatum modulates the cystine/glutamate antiporter in an OSCC cell line by increasing SLC7A11 expression, promoting L-glutamate efflux and favoring bacterial infection. Finally, our results showed that F. nucleatum and its metabolic derivates promote tumor spheroids growth, spheroids-derived cell detachment, epithelial-mesenchymal transition and Galectin-9 upregulation. Altogether, F. nucleatum promotes pro-tumoral mechanism in oral cancer.
Humans
;
Fusobacterium nucleatum/metabolism*
;
Mouth Neoplasms/metabolism*
;
Disease Progression
;
Proteomics
;
Carcinoma, Squamous Cell/metabolism*
;
Host-Pathogen Interactions
;
Metabolic Networks and Pathways
;
Case-Control Studies
;
Mass Spectrometry

Result Analysis
Print
Save
E-mail