1.Interactively Integrating Reach and Grasp Information in Macaque Premotor Cortex.
Junjun CHEN ; Guanghao SUN ; Yiwei ZHANG ; Weidong CHEN ; Xiaoxiang ZHENG ; Shaomin ZHANG ; Yaoyao HAO
Neuroscience Bulletin 2025;41(11):1991-2009
Reach-to-grasp movements require integrating information on both object location and grip type, but how these elements are planned and to what extent they interact remains unclear. We designed a new experimental paradigm in which monkeys sequentially received reach and grasp cues with delays, requiring them to retain and integrate both cues to grasp the goal object with appropriate hand gestures. Neural activity in the dorsal premotor cortex (PMd) revealed that reach and grasp were similarly represented yet not independent. Upon receiving the second cue, the PMd continued encoding the first, but over half of the neurons displayed incongruent modulations: enhanced, attenuated, or even reversed. Population-level analysis showed significant changes in encoding structure, forming distinct neural patterns. Leveraging canonical correlation analysis, we identified a shared subspace preserving the initial cue's encoding, contributed by both congruent and incongruent neurons. Together, these findings reveal a novel perspective on the interactive planning of reach and grasp within the PMd, providing insights into potential applications for brain-machine interfaces.
Animals
;
Motor Cortex/physiology*
;
Hand Strength/physiology*
;
Macaca mulatta
;
Psychomotor Performance/physiology*
;
Neurons/physiology*
;
Male
;
Cues
;
Movement/physiology*
;
Gestures
2.A Novel Retrograde AAV Variant for Functional Manipulation of Cortical Projection Neurons in Mice and Monkeys.
Yefei CHEN ; Jingyi WANG ; Jing LIU ; Jianbang LIN ; Yunping LIN ; Jinyao NIE ; Qi YUE ; Chunshan DENG ; Xiaofei QI ; Yuantao LI ; Ji DAI ; Zhonghua LU
Neuroscience Bulletin 2024;40(1):90-102
Retrograde adeno-associated viruses (AAVs) are capable of infecting the axons of projection neurons and serve as a powerful tool for the anatomical and functional characterization of neural networks. However, few retrograde AAV capsids have been shown to offer access to cortical projection neurons across different species and enable the manipulation of neural function in non-human primates (NHPs). Here, we report the development of a novel retrograde AAV capsid, AAV-DJ8R, which efficiently labeled cortical projection neurons after local administration into the striatum of mice and macaques. In addition, intrastriatally injected AAV-DJ8R mediated opsin expression in the mouse motor cortex and induced robust behavioral alterations. Moreover, AAV-DJ8R markedly increased motor cortical neuron firing upon optogenetic light stimulation after viral delivery into the macaque putamen. These data demonstrate the usefulness of AAV-DJ8R as an efficient retrograde tracer for cortical projection neurons in rodents and NHPs and indicate its suitability for use in conducting functional interrogations.
Animals
;
Haplorhini
;
Axons
;
Motor Neurons
;
Interneurons
;
Macaca
;
Dependovirus/genetics*
;
Genetic Vectors
3.Axonopathy Underlying Amyotrophic Lateral Sclerosis: Unraveling Complex Pathways and Therapeutic Insights.
Tongshu LUAN ; Qing LI ; Zhi HUANG ; Yu FENG ; Duo XU ; Yujie ZHOU ; Yiqing HU ; Tong WANG
Neuroscience Bulletin 2024;40(11):1789-1810
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by progressive axonopathy, jointly leading to the dying back of the motor neuron, disrupting both nerve signaling and motor control. In this review, we highlight the roles of axonopathy in ALS progression, driven by the interplay of multiple factors including defective trafficking machinery, protein aggregation, and mitochondrial dysfunction. Dysfunctional intracellular transport, caused by disruptions in microtubules, molecular motors, and adaptors, has been identified as a key contributor to disease progression. Aberrant protein aggregation involving TDP-43, FUS, SOD1, and dipeptide repeat proteins further amplifies neuronal toxicity. Mitochondrial defects lead to ATP depletion, oxidative stress, and Ca2+ imbalance, which are regarded as key factors underlying the loss of neuromuscular junctions and axonopathy. Mitigating these defects through interventions including neurotrophic treatments offers therapeutic potential. Collaborative research efforts aim to unravel ALS complexities, opening avenues for holistic interventions that target diverse pathological mechanisms.
Humans
;
Amyotrophic Lateral Sclerosis/therapy*
;
Animals
;
Axons/metabolism*
;
Mitochondria/metabolism*
;
Motor Neurons/pathology*
4.Glutamatergic Circuits in the Pedunculopontine Nucleus Modulate Multiple Motor Functions.
Yanwang HUANG ; Shangyi WANG ; Qingxiu WANG ; Chaowen ZHENG ; Feng YANG ; Lei WEI ; Xintong ZHOU ; Zuoren WANG
Neuroscience Bulletin 2024;40(11):1713-1731
The functional role of glutamatergic (vGluT2) neurons in the pedunculopontine nucleus (PPN) in modulating motor activity remains controversial. Here, we demonstrated that the activity of vGluT2 neurons in the rostral PPN is correlated with locomotion and ipsilateral head-turning. Beyond these motor functions, we found that these rostral PPN-vGluT2 neurons remarkably respond to salient stimuli. Furthermore, we systematically traced the upstream and downstream projections of these neurons and identified two downstream projections from these neurons to the caudal pontine reticular nucleus/anterior gigantocellular reticular nucleus (PnC/GiA) and the zona incerta (ZI). Our findings indicate that the projections to the PnC/GiA inhibit movement, consistent with 'pause-and-play' behavior, whereas those to the ZI promote locomotion, and others respond to a new 'pause-switch-play' pattern. Collectively, these findings elucidate the multifaceted influence of the PPN on motor functions and provide a robust theoretical framework for understanding its physiological and potential therapeutic implications.
Pedunculopontine Tegmental Nucleus/physiology*
;
Animals
;
Neural Pathways/physiology*
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Locomotion/physiology*
;
Glutamic Acid/metabolism*
;
Neurons/physiology*
;
Male
;
Mice
;
Motor Activity/physiology*
;
Zona Incerta/physiology*
5.Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation.
Ying WANG ; Jixian WANG ; Qing-Fang ZHANG ; Ke-Wei XIAO ; Liang WANG ; Qing-Ping YU ; Qing XIE ; Mu-Ming POO ; Yunqing WEN
Neuroscience Bulletin 2023;39(1):69-82
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Transcranial Direct Current Stimulation/methods*
;
Motor Cortex/physiology*
;
Neurons
;
Transcranial Magnetic Stimulation
6.The Secondary Motor Cortex-striatum Circuit Contributes to Suppressing Inappropriate Responses in Perceptual Decision Behavior.
Jing LIU ; Dechen LIU ; Xiaotian PU ; Kexin ZOU ; Taorong XIE ; Yaping LI ; Haishan YAO
Neuroscience Bulletin 2023;39(10):1544-1560
The secondary motor cortex (M2) encodes choice-related information and plays an important role in cue-guided actions. M2 neurons innervate the dorsal striatum (DS), which also contributes to decision-making behavior, yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear. Using mice performing a visual Go/No-Go task, we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm (FA) rate to the reward-irrelevant No-Go stimulus. The choice signal of M2 neurons correlated with behavioral performance, and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS. By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs, we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus, and inactivating their early responses increased the FA rate. These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.
Mice
;
Animals
;
Motor Cortex
;
Corpus Striatum/physiology*
;
Neostriatum
;
Neurons/physiology*
;
Reaction Time
7.Spinal Cord Mapping of Respiratory Intercostal Motoneurons in Adult Mice.
Junhong ZHANG ; Fenlan LUO ; Shuancheng REN ; Yaling WANG ; Wu LI ; Kan XU ; Ziyi ZHENG ; Chao HE ; Jianxia XIA ; Wei XIONG ; Zhi-An HU
Neuroscience Bulletin 2022;38(12):1588-1592
8.Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery.
Zhengrun GAO ; Zhen PANG ; Yiming CHEN ; Gaowei LEI ; Shuai ZHU ; Guotao LI ; Yundong SHEN ; Wendong XU
Neuroscience Bulletin 2022;38(12):1569-1587
Central nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain-computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Animals
;
Spinal Cord Injuries/therapy*
;
Motor Neurons/physiology*
;
Brain
;
Stroke
;
Recovery of Function/physiology*
9.Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target.
Qinming ZHOU ; Lu HE ; Jin HU ; Yining GAO ; Dingding SHEN ; You NI ; Yuening QIN ; Huafeng LIANG ; Jun LIU ; Weidong LE ; Sheng CHEN
Frontiers of Medicine 2022;16(5):723-735
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. At present, no definite ALS biomarkers are available. In this study, exosomes from the plasma of patients with ALS and healthy controls were extracted, and differentially expressed exosomal proteins were compared. Among them, the expression of exosomal coronin-1a (CORO1A) was 5.3-fold higher than that in the controls. CORO1A increased with disease progression at a certain proportion in the plasma of patients with ALS and in the spinal cord of ALS mice. CORO1A was also overexpressed in NSC-34 motor neuron-like cells, and apoptosis, oxidative stress, and autophagic protein expression were evaluated. CORO1A overexpression resulted in increased apoptosis and oxidative stress, overactivated autophagy, and hindered the formation of autolysosomes. Moreover, CORO1A activated Ca2+-dependent phosphatase calcineurin, thereby blocking the fusion of autophagosomes and lysosomes. The inhibition of calcineurin activation by cyclosporin A reversed the damaged autolysosomes. In conclusion, the role of CORO1A in ALS pathogenesis was discovered, potentially affecting the disease onset and progression by blocking autophagic flux. Therefore, CORO1A might be a potential biomarker and therapeutic target for ALS.
Mice
;
Animals
;
Amyotrophic Lateral Sclerosis/pathology*
;
Calcineurin/metabolism*
;
Motor Neurons/pathology*
;
Microfilament Proteins/metabolism*
;
Cytoskeletal Proteins/metabolism*
10.Establishment of a microtubule-fluorescent fusion protein mosaically labeled zebrafish motor neuron system.
Fang YUAN ; Pei-Pei QIAN ; Xin WANG ; Jia-Jing SHENG ; Dong LIU ; Jie GONG
Acta Physiologica Sinica 2022;74(3):411-418
Motor neurons are an important type of neurons that control movement. The transgenic fluorescent protein (FP)-labeled motor neurons of zebrafish line is disadvantageous for studying the morphogenesis of motor neurons. For example, the individual motor neuron is indistinguishable in this transgenic line due to the high density of the motor neurons and the interlaced synapses. In order to optimize the in vivo imaging methods for the analysis of motor neurons, the present study was aimed to establish a microtubule-fluorescent fusion protein mosaic system that can label motor neurons in zebrafish. Firstly, the promotor of mnx1, which was highly expressed in the spinal cord motor neurons, was subcloned into pDestTol2pA2 construct combined with the GFP-α-Tubulin fusion protein sequence by Gateway cloning technique. Then the recombinant constructs were co-injected with transposase mRNA into the 4-8 cell zebrafish embryos. Confocal imaging analysis was performed at 72 hours post fertilization (hpf). The results showed that the GFP fusion protein was expressed in three different types of motor neurons, and individual motor neurons were mosaically labeled. Further, the present study analyzed the correlation between the injection dose and the number and distribution of the mosaically labeled neurons. Fifteen nanograms of the recombinant constructs were suggested as an appropriate injection dose. Also, the defects of the motor neuron caused by the down-regulation of insm1a and kif15 were verified with this system. These results indicate that our novel microtubule-fluorescent fusion protein mosaic system can efficiently label motor neurons in zebrafish, which provides a more effective model for exploring the development and morphogenesis of motor neurons. It may also help to decipher the mechanisms underlying motor neuron disease and can be potentially utilized in drug screening.
Animals
;
Animals, Genetically Modified
;
Green Fluorescent Proteins/pharmacology*
;
Microtubules/metabolism*
;
Motor Neurons
;
Zebrafish/genetics*
;
Zebrafish Proteins/genetics*

Result Analysis
Print
Save
E-mail