1.Inhibition of cap-dependent endonuclease in influenza virus with ADC189: a pre-clinical analysis and phase I trial.
Jing WEI ; Yaping DENG ; Xiaoyun ZHU ; Xin XIAO ; Yang YANG ; Chunlei TANG ; Jian CHEN
Frontiers of Medicine 2025;19(2):347-358
ADC189 is a novel drug of cap-dependent endonuclease inhibitor. In our study, its antiviral efficacy was evaluated in vitro and in vivo, and compared with baloxavir marboxil and oseltamivir. A first-in-human phase I study in healthy volunteers included single ascending dose (SAD) and food effect (FE) parts. In the preclinical study, ADC189 showed potent antiviral activity against various types of influenza viruses, including H1N1, H3N2, influenza B virus, and highly pathogenic avian influenza, comparable to baloxavir marboxil. Additionally, ADC189 exhibited much better antiviral efficacy than oseltamivir in H1N1 infected mice. In the phase I study, ADC189 was rapidly metabolized to ADC189-I07, and its exposure increased proportionally with the dose. The terminal elimination half-life (T1/2) ranged from 76.69 to 98.28 hours. Of note, food had no effect on the concentration, clearance, and exposure of ADC189. It was well tolerated, with few treatment-emergent adverse events (TEAEs) reported and no serious adverse events (SAEs). ADC189 demonstrated excellent antiviral efficacy both in vitro and in vivo. It was safe, well-tolerated, and had favorable pharmacokinetic characteristics in healthy volunteers, supporting its potential for single oral dosing in clinical practice.
Humans
;
Antiviral Agents/therapeutic use*
;
Animals
;
Male
;
Adult
;
Mice
;
Female
;
Endonucleases/antagonists & inhibitors*
;
Influenza, Human/drug therapy*
;
Young Adult
;
Dibenzothiepins/pharmacology*
;
Oseltamivir/pharmacology*
;
Middle Aged
;
Triazines/pharmacology*
;
Thiepins/pharmacology*
;
Influenza B virus/drug effects*
;
Influenza A Virus, H1N1 Subtype/drug effects*
;
Pyridines/pharmacology*
;
Morpholines
;
Pyridones
2.Dual-Blocking of PI3K and mTOR Improves Chemotherapeutic Effects on SW620 Human Colorectal Cancer Stem Cells by Inducing Differentiation.
Min Jung KIM ; Jeong Eun KOO ; Gi Yeon HAN ; Buyun KIM ; Yoo Sun LEE ; Chiyoung AHN ; Chan Wha KIM
Journal of Korean Medical Science 2016;31(3):360-370
Cancer stem cells (CSCs) have tumor initiation, self-renewal, metastasis and chemo-resistance properties in various tumors including colorectal cancer. Targeting of CSCs may be essential to prevent relapse of tumors after chemotherapy. Phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) signals are central regulators of cell growth, proliferation, differentiation, and apoptosis. These pathways are related to colorectal tumorigenesis. This study focused on PI3K and mTOR pathways by inhibition which initiate differentiation of SW620 derived CSCs and investigated its effect on tumor progression. By using rapamycin, LY294002, and NVP-BEZ235, respectively, PI3K and mTOR signals were blocked independently or dually in colorectal CSCs. Colorectal CSCs gained their differentiation property and lost their stemness properties most significantly in dual-blocked CSCs. After treated with anti-cancer drug (paclitaxel) on the differentiated CSCs cell viability, self-renewal ability and differentiation status were analyzed. As a result dual-blocking group has most enhanced sensitivity for anti-cancer drug. Xenograft tumorigenesis assay by using immunodeficiency mice also shows that dual-inhibited group more effectively increased drug sensitivity and suppressed tumor growth compared to single-inhibited groups. Therefore it could have potent anti-cancer effects that dual-blocking of PI3K and mTOR induces differentiation and improves chemotherapeutic effects on SW620 human colorectal CSCs.
AC133 Antigen/genetics/metabolism
;
Animals
;
Antineoplastic Agents/pharmacology/therapeutic use
;
Cell Differentiation/*drug effects
;
Cell Line, Tumor
;
Cell Survival/drug effects
;
Chromones/pharmacology/therapeutic use
;
Colorectal Neoplasms/drug therapy/metabolism/pathology
;
Humans
;
Imidazoles/pharmacology/therapeutic use
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Mice, Nude
;
Morpholines/pharmacology/therapeutic use
;
Neoplastic Stem Cells/cytology/drug effects/metabolism
;
Paclitaxel/pharmacology/therapeutic use
;
Phosphatidylinositol 3-Kinases/*antagonists & inhibitors/metabolism
;
Quinolines/pharmacology/therapeutic use
;
SOXB1 Transcription Factors/genetics/metabolism
;
Signal Transduction/*drug effects
;
Sirolimus/pharmacology/therapeutic use
;
TOR Serine-Threonine Kinases/*antagonists & inhibitors/metabolism
;
Xenograft Model Antitumor Assays
3.Leukemic stem cell targeting therapy.
Chinese Journal of Oncology 2006;28(6):401-403
Animals
;
Antineoplastic Agents
;
pharmacology
;
therapeutic use
;
Chromones
;
pharmacology
;
therapeutic use
;
Hematopoietic Stem Cell Transplantation
;
methods
;
Humans
;
Leukemia
;
metabolism
;
pathology
;
therapy
;
Leupeptins
;
pharmacology
;
therapeutic use
;
Morpholines
;
pharmacology
;
therapeutic use
;
NF-kappa B
;
metabolism
;
Neoplastic Stem Cells
;
drug effects
;
Phosphatidylinositol 3-Kinases
;
antagonists & inhibitors

Result Analysis
Print
Save
E-mail