1.Effects of Tiaoshu Anshen acupuncture on sleep quality and serum neurotransmitter levels in patients with chronic insomnia.
Lian LIU ; Tianya YAN ; Zhuangzhi CHEN ; Zhen KANG ; Mengyao LI ; Qiongjue GAO ; Zuoai QIN ; Yecheng WEN ; Weiai LIU ; Zhongying FU
Chinese Acupuncture & Moxibustion 2025;45(2):151-155
OBJECTIVE:
To observe the effects of Tiaoshu Anshen (regulating the hinge and calming the mind) acupuncture on sleep quality and serum levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in patients with chronic insomnia.
METHODS:
A total of 58 patients with chronic insomnia were randomly divided into an acupuncture group and a medication group, 29 cases in each group. Tiaoshu Anshen acupuncture was applied at Baihui (GV20) and bilateral Shenmen (HT7), Sanyinjiao (SP6), Benshen (GB13) in the acupuncture group, once a day, 1-day interval was taken after 6 consecutive days of treatment. Estazolam tablet was given orally before bed in the medication group, 1 mg each time. The 4-week treatment was required in both groups. Before and after treatment, the sleep quality was assessed by Pittsburgh sleep quality index (PSQI) and polysomnography (PSG), the serum levels of 5-HT and DA were detected by ELISA.
RESULTS:
After treatment, the item scores and total scores of PSQI were decreased compared with those before treatment in the two groups (P<0.05); in the acupuncture group, the scores of sleep quality, sleep latency, sleep time, sleep efficiency, sleep disorders and total score of PSQI were lower than those in the medication group (P<0.05). After treatment, the total sleep time (TST) was prolonged (P<0.05), the sleep latency (SL) and wake after sleep onset (WASO) were shortened (P<0.05), the sleep efficiency (SE%), percentage of non-rapid eye movement stage 3 (N3%), percentage of rapid eye movement stage (REM%) and serum levels of 5-HT were increased (P<0.05) compared with those before treatment; the percentage of non-rapid eye movement stage 1 (N1%), percentage of non-rapid eye movement stage 2 (N2%) and serum levels of DA were decreased (P<0.05) compared with those before treatment in the two groups. After treatment, in the acupuncture group, TST was longer, while SL and WASO were shorter than those in the medication group (P<0.05), SE%, N3%, REM% and serum level of 5-HT were higher, while N1%, N2% and serum level of DA were lower than those in the medication group (P<0.05).
CONCLUSION
Tiaoshu Anshen acupuncture may improve the sleep quality by regulating the serum neurotransmitter levels i.e. 5-HT and DA in patients with chronic insomnia.
Humans
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Male
;
Acupuncture Therapy
;
Female
;
Middle Aged
;
Adult
;
Serotonin/blood*
;
Sleep Quality
;
Acupuncture Points
;
Dopamine/blood*
;
Aged
;
Neurotransmitter Agents/blood*
;
Young Adult
2.Pharmacotherapy in patients with heart failure with reduced ejection fraction: A systematic review and meta-analysis.
Jia TANG ; Ping WANG ; Chenxi LIU ; Jia PENG ; Yubo LIU ; Qilin MA
Chinese Medical Journal 2025;138(8):925-933
BACKGROUND:
Angiotensin receptor neprilysin inhibitors (ARNIs), angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), β-blockers (BBs), and mineralocorticoid receptor antagonists (MRAs) are the cornerstones in treating heart failure with reduced ejection fraction (HFrEF). Sodium-glucose cotransporter 2 inhibitors (SGLT-2is) are included in HFrEF treatment guidelines. However, the effect of SGLT-2i and the five drugs on HFrEF have not yet been systematically evaluated.
METHODS:
PubMed, Embase, and the Cochrane Library were searched for randomized controlled trials (RCTs) from inception dates to September 23, 2022. Additional trials from previous relevant reviews and references were also included. The primary outcomes were changes in left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter/dimension (LVEDD), left ventricular end-systolic diameter/dimension (LVESD), left ventricular end-diastolic volume (LVEDV), and left ventricular end-systolic volume (LVESV), left ventricular end-systolic volume index (LVESVI), and left ventricular end-diastolic volume index (LVEDVI). Secondary outcomes were New York Heart Association (NYHA) class, 6-min walking distance (6MWD), B-type natriuretic peptide (BNP) level, and N-terminal pro-BNP (NT-proBNP) level. The effect sizes were presented as the mean difference (MD) with 95% confidence interval (CI).
RESULTS:
We included 68 RCTs involving 16,425 patients. Compared with placebo, ARNI + BB + MRA + SGLT-2i was the most effective combination to improve LVEF (15.63%, 95% CI: 9.91% to 21.68%). ARNI + BB + MRA + SGLT-2i (5.83%, 95% CI: 0.53% to 11.14%) and ARNI + BB + MRA (3.83%, 95% CI: 0.72% to 6.90%) were superior to the traditional golden triangle ACEI + BB + MRA in improving LVEF. ACEI + BB + MRA + SGLT-2i was better than ACEI + BB + MRA (-8.05 mL/m 2 , 95% CI: -14.88 to -1.23 mL/m 2 ) and ACEI + BB + SGLT-2i (-18.94 mL/m 2 , 95% CI: -36.97 to -0.61 mL/m 2 ) in improving LVEDVI. ACEI + BB + MRA + SGLT-2i (-3254.21 pg/mL, 95% CI: -6242.19 to -560.47 pg/mL) was superior to ARB + BB + MRA in reducing NT-proBNP.
CONCLUSIONS:
Adding SGLT-2i to ARNI/ACEI + BB + MRA is beneficial for reversing cardiac remodeling. The new quadruple drug "ARNI + BB + MRA + SGLT-2i" is superior to the golden triangle "ACEI + BB + MRA" in improving LVEF.
REGISTRATION
PROSPERO; No. CRD42022354792.
Humans
;
Heart Failure/physiopathology*
;
Stroke Volume/physiology*
;
Angiotensin Receptor Antagonists/therapeutic use*
;
Angiotensin-Converting Enzyme Inhibitors/therapeutic use*
;
Sodium-Glucose Transporter 2 Inhibitors/therapeutic use*
;
Randomized Controlled Trials as Topic
;
Mineralocorticoid Receptor Antagonists/therapeutic use*
;
Adrenergic beta-Antagonists/therapeutic use*
3.Molecular mechanism of verbascoside in promoting acetylcholine release of neurotransmitter.
Zhi-Hua ZHOU ; Hai-Yan XING ; Yan LIANG ; Jie GAO ; Yang LIU ; Ting ZHANG ; Li ZHU ; Jia-Long QIAN ; Chuan ZHOU ; Gang LI
China Journal of Chinese Materia Medica 2025;50(2):335-348
The molecular mechanism of verbascoside(OC1) in promoting acetylcholine(ACh) release in the pathogenesis of Alzheimer's disease(AD) was studied. Adrenal pheochromocytoma cells(PC12) of rats induced by β-amyloid protein(1-42)(Aβ_(1-42)) were used as AD models in vitro and were divided into control group, model group(Aβ_(1-42) 10 μmol·L~(-1)), OC1 treatment group(2 and 10 μg·mL~(-1)). The effect of OC1 on phosphorylated proteins in AD models was analyzed by whole protein phosphorylation quantitative omics, and the selectivity of OC1 for calcium channel subtypes was virtually screened in combination with computer-aided drug design. The fluorescence probe Fluo-3/AM was used to detect Ca~(2+) concentration in cells. Western blot analysis was performed to detect the effects of OC1 on the expression of phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ, Thr286) and synaptic vesicle-related proteins, and UPLC/Q Exactive MS was used to detect the effects of OC1 on ACh release in AD models. The effects of OC1 on acetylcholine esterase(AChE) activity in AD models were detected. The results showed that the differentially modified proteins in the model group and the OC1 treatment group were related to calcium channel activation at three levels: GO classification, KEGG pathway, and protein domain. The results of molecular docking revealed the dominant role of L-type calcium channels. Fluo-3/AM fluorescence intensity decreased under the presence of Ca~(2+) chelating agent ethylene glycol tetraacetic acid(EGTA), L-type calcium channel blocker verapamil, and N-type calcium channel blocker conotoxin, and the effect of verapamil was stronger than that of conotoxin. This confirmed that OC1 promoted extracellular Ca~(2+) influx mainly through its interaction with L-type calcium channel protein. In addition, proteomic analysis and Western blot results showed that the expression of p-CaMKⅡ and downstream vesicle-related proteins was up-regulated after OC1 treatment, indicating that OC1 acted on vesicle-related proteins by activating CaMKⅡ and participated in synaptic remodeling and transmitter release, thus affecting learning and memory. OC1 also decreased the activity of AChE and prolonged the action time of ACh in synaptic gaps.
Animals
;
Rats
;
Glucosides/administration & dosage*
;
Acetylcholine/metabolism*
;
Alzheimer Disease/genetics*
;
PC12 Cells
;
Phenols/chemistry*
;
Neurotransmitter Agents/metabolism*
;
Drugs, Chinese Herbal
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics*
;
Humans
;
Phosphorylation/drug effects*
;
Calcium/metabolism*
;
Polyphenols
4.Lipid-lowering activity of Panax notoginseng flowers and rhizomes on hyperlipidemia rats based on chemical composition similarity.
Meng YE ; Jin-Wen MA ; Hai-Yue ZHONG ; Yu-Ling XU
China Journal of Chinese Materia Medica 2025;50(3):776-786
Based on the similarity of chemical constituents between Panax notoginseng flowers and rhizomes, this study investigated their lipid-lowering effects and impacts on the intestinal flora of rats. The main components of P. notoginseng flowers and rhizomes were detected by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) to compare their chemical similarities. A hyperlipidemia rat model was induced using a high-fat diet. After successful modeling, the rats were divided into the blank control group, blank administration group(0.090 g·kg~(-1)), model group, low-(0.045 g·kg~(-1)), medium-(0.090 g·kg~(-1)), high-dose(0.180 g·kg~(-1)) P. notoginseng flower group, P. notoginseng rhizome group(0.270 g·kg~(-1)), and simvastatin group(0.900 mg·kg~(-1)). After modeling, the rats were given intragastric administration for 3 weeks, once daily, while their body weight was recorded regularly. Before the last administration, fresh feces were collected for analysis of changes in intestinal flora using 16S rDNA high-throughput sequencing technology. One hour after the last administration, the rats were anesthetized with 1% pentobarbital sodium, and blood was collected from the abdominal aorta. Serum biochemical indexes were detected using an automatic biochemical analyzer. Organs(heart, liver, spleen, lung, and kidney) were harvested, and organ index were calculated. Liver tissue pathology was assessed through HE staining and oil red O staining. The results indicated that there were 33 identical chemical constituents in P. notoginseng flowers and rhizomes, accounting for 75.00% of the total constituents. After treatment, high-dose P. notoginseng flower group and P. notoginseng rhizome group exhibited similar effects on body weight, serum biochemical indexes, and liver histopathological conditions. Compared with model control group, the abundance of Firmicutes and Actinobacteria increased in high-dose P. notoginseng flower and rhizome groups, while the abundance of Bacteroidetes and Thermodesulfobacteria decreased. Cluster analysis showed no significant difference between the two groups. Both P. notoginseng flowers and rhizomes possess similar chemical components and lipid-lowering effects, and they can regulate the intestinal flora imbalance caused by hyperlipidemia, indicating their potential for use in hyperlipidemia treatment.
Animals
;
Hyperlipidemias/microbiology*
;
Panax notoginseng/chemistry*
;
Rats
;
Rhizome/chemistry*
;
Male
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/administration & dosage*
;
Gastrointestinal Microbiome/drug effects*
;
Humans
;
Liver/drug effects*
5.Hypolipidemic effect and mechanism of Arisaema Cum Bile based on gut microbiota and metabolomics.
Peng ZHANG ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Bao-Wu ZHANG ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(6):1544-1557
Based on the high-fat diet-induced hyperlipidemia rat model, this study aimed to evaluate the lipid-lowering effect of Arisaema Cum Bile and explore its mechanisms, providing experimental evidence for its clinical application. Biochemical analysis was used to detect serum levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), triglycerides(TG), and total cholesterol(TC) to assess the lipid-lowering activity of Arisaema Cum Bile. Additionally, 16S rDNA sequencing and metabolomics techniques were employed to jointly elucidate the lipid-lowering mechanisms of Arisaema Cum Bile. The experimental results showed that high-dose Arisaema Cum Bile(PBA-H) significantly reduced serum ALT, AST, LDL-C, TG, and TC levels(P<0.01), and significantly increased HDL-C levels(P<0.01). The effect was similar to that of fenofibrate, with no significant difference. Furthermore, Arisaema Cum Bile significantly alleviated hepatocyte ballooning and mitigated fatty degeneration in liver tissues. As indicated by 16S rDNA sequencing results, PBA-H significantly enhanced both alpha and beta diversity of the gut microbiota in the model rats, notably increasing the relative abundance of Akkermansia and Subdoligranulum species(P<0.01). Liver metabolomics analysis revealed that PBA-H primarily regulated pathways involved in arachidonic acid metabolism, vitamin B_6 metabolism, and steroid biosynthesis. In summary, Arisaema Cum Bile significantly improved abnormal blood lipid levels and liver pathology induced by a high-fat diet, regulated hepatic metabolic disorders, and improved the abundance and structural composition of gut microbiota, thereby exerting its lipid-lowering effect. The findings of this study provide experimental evidence for the clinical application of Arisaema Cum Bile and the treatment of hyperlipidemia.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Metabolomics
;
Hyperlipidemias/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/pharmacology*
;
Liver/metabolism*
;
Humans
;
Alanine Transaminase/metabolism*
;
Triglycerides/metabolism*
;
Aspartate Aminotransferases/metabolism*
6.Neuroprotective effects of idebenone combined with borneol via the dopamine signaling pathway in a transgenic zebrafish model of Parkinson's disease.
Qifei WANG ; Yayun ZHONG ; Yanan YANG ; Kechun LIU ; Li LIU ; Yun ZHANG
Journal of Biomedical Engineering 2025;42(5):1046-1053
The aim of this study is to investigate the protective effect of idebenone (IDE) combined with borneol (BO) against Parkinson's disease (PD). In this study, wild-type AB zebrafish and transgenic Tg ( vmat2: GFP) zebrafish with green fluorescence labeled dopamine neurons were used to establish the PD model with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Following drug treatment, the behavioral performance and dopamine neuron morphology of zebrafish were evaluated, and regulation of dopamine signaling pathway-related genes was determined using RT-qPCR. The results showed that IDE combined with BO improved the behavioral disorders of zebrafish such as bradykinesia and shortening movement distance, also effectively reversed the damage of MPTP-induced dopaminergic neurons. At the same time, the expression of dopamine synthesis and transportation-related genes was up-regulated, and the normal function of the signal transduction pathway was restored. The combination showed a better therapeutic effect compared to the IDE monotherapy group. This study reveals the protective mechanism of IDE combined with BO on the central nervous system for the first time, which provides an important experimental basis and theoretical reference for clinical combination strategy in PD treatment.
Animals
;
Zebrafish
;
Signal Transduction/drug effects*
;
Animals, Genetically Modified
;
Dopamine/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Disease Models, Animal
;
Camphanes/pharmacology*
;
Ubiquinone/pharmacology*
;
Parkinson Disease/drug therapy*
;
Dopaminergic Neurons/metabolism*
7.Research on the anti-inflammatory effects of a novel sleep-aid decoction on elderly insomnia patients across traditional Chinese medicine constitutional types.
Zhen WU ; Zhuoqiong BIAN ; Ailin CHEN ; Qiuping ZHANG ; Jie LI ; Hui ZHOU ; Hongying ZHU
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1007-1012
Objective To evaluate the clinical efficacy of a novel sleep-aid decoction in treating elderly insomnia patients with different traditional Chinese medicine (TCM) constitutional types, and its effects on neurotransmitter and inflammatory factor levels. Methods A total of 200 patients with four different TCM constitutions-peaceful, Qi-deficient, Yin-deficient, and Yang-deficient-were recruited. Peripheral blood neurotransmitter and inflammatory factor levels were measured for variations among insomnia patients across different constitutions. These patients were treated using the novel sleep-aid decoction, the effects of which were evaluated based on changes in neurotransmitters and inflammatory factors. Results Compared to the peaceful constitution group, insomnia patients with Qi-deficient, Yin-deficient, and Yang-deficient constitutions exhibited significantly elevated baseline levels of neurotransmitters (5-HT, GABA) and inflammatory factors (IL-6, TNF-α, IL-1β, CRP). Following the treatment, the Qi-deficient and Yin-deficient groups showed a marked increase in 5-HT levels, restored balance of Glu, GABA, and melatonin, and significant reductions in IL-6 and TNF-α levels. The overall effective rate was 83.5%, with optimal efficacy observed in the Qi-deficient (97.72%) and Yin-deficient (95.34%) groups. Conclusion The novel sleep-aid decoction is effective in treating insomnia in elderly patients, with the best results observed in the Qi-deficient and Yin-deficient constitution groups.
Humans
;
Sleep Initiation and Maintenance Disorders/blood*
;
Aged
;
Male
;
Female
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Middle Aged
;
Tumor Necrosis Factor-alpha/blood*
;
Sleep Aids, Pharmaceutical/therapeutic use*
;
Anti-Inflammatory Agents/therapeutic use*
;
Interleukin-6/blood*
;
Interleukin-1beta/blood*
;
Neurotransmitter Agents/blood*
;
Aged, 80 and over
;
C-Reactive Protein/metabolism*
8.Acupuncture as A Potential Therapeutic Approach for Tourette Syndrome: Modulation of Neurotransmitter Levels and Gut Microbiota.
Bing-Xin WU ; Jun-Ye MA ; Xi-Chang HUANG ; Xue-Song LIANG ; Bai-le NING ; Qian WU ; Shan-Ze WANG ; Jun-He ZHOU ; Wen-Bin FU
Chinese journal of integrative medicine 2025;31(8):735-742
OBJECTIVE:
To investigate the effects of acupuncture on the neurotransmitter levels and gut microbiota in a mouse model of Tourette syndrome (TS).
METHODS:
Thirty-six male C57/BL6 mice were randomly divided into 4 groups using a random number table method: 3,3'-iminodipropionitrile (IDPN) group, control group, acupuncture group, and tiapride group, with 9 mice in each group. In the IDPN group, acupuncture group, and tiapride group, mice received daily intraperitoneal injections of IDPN (300 mg/kg body weight) for 7 consecutive days to induce stereotyped behaviors. Subsequently, in the acupuncture intervention group, standardized acupuncture treatment was administered for 14 consecutive days to IDPN-induced TS model mice. The selected acupoints included Baihui (DU 20), Yintang (DU 29), Waiguan (SJ 5), and Zulinqi (GB 41). In the tiapride group, mice were administered tiapride (50 mg/kg body weight) via oral gavage daily for 14 consecutive days. The control group, IDPN group, and acupuncture group received the same volume of saline orally for 14 consecutive days. Stereotypic behaviors were quantified through behavioral assessments. Neurotransmitter levels, including dopamine (DA), glutamate (Glu), and aspartate (ASP) in striatal tissue were measured using enzyme-linked immunosorbent assay. Dopamine transporter (DAT) expression levels were additionally quantified through quantitative polymerase chain reaction (qPCR). Gut microbial composition was analyzed through 16S ribosomal RNA gene sequencing, while metabolic profiling was conducted using liquid chromatography-mass spectrometry (LC-MS).
RESULTS:
Acupuncture administration significantly attenuated stereotypic behaviors, concurrently reducing striatal levels of DA, Glu and ASP concentrations while upregulating DAT expression compared with untreated TS controls (P<0.05 or P<0.01). Comparative analysis identified significant differences in Muribaculaceae (P=0.001), Oscillospiraceae (P=0.049), Desulfovibrionaceae (P=0.001), and Marinifilaceae (P=0.014) following acupuncture intervention. Metabolomic profiling revealed alterations in 7 metabolites and 18 metabolic pathways when compared to the TS mice, which involved various amino acid metabolisms associated with DA, Glu, and ASP.
CONCLUSIONS
Acupuncture demonstrates significant modulatory effects on both central neurotransmitter systems and gut microbial ecology, thereby highlighting its dual therapeutic potential for TS management through gut-brain axis regulation.
Animals
;
Tourette Syndrome/metabolism*
;
Gastrointestinal Microbiome
;
Neurotransmitter Agents/metabolism*
;
Acupuncture Therapy
;
Male
;
Mice, Inbred C57BL
;
Mice
9.Jiawei Xiaoyao Pills improves depression-like behavior in rats by regulating neurotransmitters, inhibiting inflammation and oxidation and modulating intestinal flora.
Ying LIU ; Borui LI ; Yongcai LI ; Lubo CHANG ; Jiao WANG ; Lin YANG ; Yonggang YAN ; Kai QV ; Jiping LIU ; Gang ZHANG ; Xia SHEN
Journal of Southern Medical University 2025;45(2):347-358
OBJECTIVES:
To explore the bioactive components in Jiawei Xiaoyao Pills (JWXYP) and their mechanisms for alleviating depression-like behaviors.
METHODS:
The active compounds, key targets, and pathways of JWXYP were identified using TCMSP and TCMIP databases. Thirty-six SD rats were randomized equally into 6 groups including a control group and 5 chronic unpredictable mild stress (CUMS)-induced depression groups. After modeling, the 5 model groups were treated with daily gavage of normal saline, 1.8 mg/kg fluoxetine hydrochloride (positive control drug), or JWXYP at 1.44, 2.88, and 4.32 g/kg. The depression-like behaviors of the rats were evaluated using behavioral tests, and pathological changes in the liver and hippocampus were examined with HE staining. The biochemical indicators in the serum and brain tissues were detected using ELISA. Serum metabolomics analysis was performed to identify the differential metabolites using OPLS-DA, and gut microbiota changes were analyzed using 16S rDNA sequencing.
RESULTS:
Network pharmacology revealed that menthone and paeonol in JWXYP were capable of penetrating the blood-brain barrier to regulate inflammatory pathways and protect the nervous system. In the rat models subjected to CUMS, treatment with JWXYP significantly improved body weight loss, sucrose preference and open field activities, reduced liver inflammation, alleviated structural changes in the hippocampal neurons, decreased serum levels of TNF‑α, IL-1β, IL-6 and LBP, and increased 5-HT and VIP concentrations in the serum and brain tissue, and these effects were the most pronounced in the high-dose group. Metabolomics analysis showed changes in such metabolites as indole-3-acetamide and acetyl-L-carnitine in JWXYP-treated rats, involving the pathways for bile acid biosynthesis and amino acid metabolism. 16S rDNA analysis demonstrated increased gut microbiota diversity and increased abundance of Lactobacillus species in JWXYP-treated rats.
CONCLUSIONS
JWXYP alleviates depression-like symptoms in rats by regulating the neurotransmitters, inhibiting inflammation and oxidation, and modulating gut microbiota.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Neurotransmitter Agents/metabolism*
;
Rats
;
Inflammation
;
Male
;
Hippocampus
;
Behavior, Animal/drug effects*
10.Research progress of neurotransmitters in lung injury after traumatic brain injury.
Le CAO ; Haikun ZHANG ; Jinxiang YU ; Pengcheng MA ; Lifeng JIA ; Tao ZHAO
Chinese Critical Care Medicine 2025;37(10):982-988
Traumatic brain injury (TBI), as a significant central nervous system damage disease with high frequency in the world, leads to a huge number of patients with impaired health and lower quality of life every year. Lung injury is a common and dangerous consequence, which dramatically raises the mortality of patients. Discovering the pathophysiology of lung injury after TBI and discovering viable therapeutic targets has become an important need for clinical diagnosis and therapy. Neurotransmitters, as the fundamental chemical agents of the nervous system for signal transmission, not only govern neuronal activity and apoptosis in TBI but also significantly influence the pathophysiological mechanisms of lung injury subsequent to TBI. The imbalance is intricately linked to the onset and progression of lung damage. This paper systematically reviews the clinical characteristics and predominant pathogenesis of lung injury following TBI, emphasizing the role of key neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA), norepinephrine (NE), dopamine (DA), and acetylcholine (ACh), in lung injury post-TBI. It examines their influence on inflammatory response, vascular permeability, and pulmonary circulation function. Additionally, the paper evaluates the research advancements and potential applications of targeted therapeutic strategies for various neurotransmitter systems, such as receptor antagonists, transporter inhibitors, and neurotransmitter analogues. This research aims to offer a theoretical framework for clarifying the neural regulatory mechanisms of lung injury following TBI and to establish a basis for the development of novel therapeutic strategies and enhancement of the prognosis of the patients.
Humans
;
Brain Injuries, Traumatic/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Lung Injury/metabolism*
;
gamma-Aminobutyric Acid/metabolism*
;
Glutamic Acid/metabolism*
;
Norepinephrine/metabolism*
;
Dopamine/metabolism*
;
Acetylcholine/metabolism*

Result Analysis
Print
Save
E-mail