1.CHD1 deletion stabilizes HIF1α to promote angiogenesis and glycolysis in prostate cancer.
Yu-Zhao WANG ; Yu-Chen QIAN ; Wen-Jie YANG ; Lei-Hong YE ; Guo-Dong GUO ; Wei LV ; Meng-Xi HUAN ; Xiao-Yu FENG ; Ke WANG ; Zhao YANG ; Yang GAO ; Lei LI ; Yu-Le CHEN
Asian Journal of Andrology 2023;25(2):152-157
Chromodomain-helicase-DNA-binding protein 1 (CHD1) deletion is among the most common mutations in prostate cancer (PCa), but its role remains unclear. In this study, RNA sequencing was conducted in PCa cells after clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-based CHD1 knockout. Gene set enrichment analysis (GSEA) indicated upregulation of hypoxia-related pathways. A subsequent study confirmed that CHD1 deletion significantly upregulated hypoxia-inducible factor 1α (HIF1α) expression. Mechanistic investigation revealed that CHD1 deletion upregulated HIF1α by transcriptionally downregulating prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase catalyzing the hydroxylation of HIF1α and thus promoting its degradation by the E3 ligase von Hippel-Lindau tumor suppressor (VHL). Functional analysis showed that CHD1 deletion promoted angiogenesis and glycolysis, possibly through HIF1α target genes. Taken together, these findings indicate that CHD1 deletion enhances HIF1α expression through PHD2 downregulation and therefore promotes angiogenesis and metabolic reprogramming in PCa.
Male
;
Humans
;
Von Hippel-Lindau Tumor Suppressor Protein/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Hypoxia
;
Prostatic Neoplasms/pathology*
;
Glycolysis
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Cell Line, Tumor
;
DNA Helicases/metabolism*
2.Shikonin induces hepatocellular carcinoma cell apoptosis by suppressing PKM2/PHD3/HIF-1α signaling pathway.
Huan Huan ZHANG ; Zhuo CHEN ; Xiang Di ZHAO ; Qiang HUO ; Xiu CHENG
Journal of Southern Medical University 2023;43(1):92-98
OBJECTIVE:
To investigate the mechanism of shikonin-induced death of human hepatocellular carcinoma SMMC-7721 cells.
METHODS:
Cultured SMMC-7721 cells and normal hepatocytes (L-02 cells) were treated with 4, 8, or 16 μmol/L shikonin, and the changes in cell viability was assessed using MTT assay. The levels of ATP and lactic acid in the cell cultures were detected using commercial kits. Co-immunoprecipitation and immunofluorescence staining were used to determine the relationship among pyruvate kinase M2 (PKM2), prolyl hydroxylase 3 (PHD3), and hypoxia-inducible factor-1α (HIF-1α). The expressions of PHD3, PKM2, HIF-1α, Bax, cleaved caspase-3, and Bcl-2 in SMMC-7721 cells were detected with Western blotting, and cell apoptosis was analyzed with annexin V-FITC/PI staining. The effects of RNA interference of PKM2 on PHD3 and HIF-1α expressions in SMMC-7721 cells were detected using Western blotting.
RESULTS:
The IC50 of shikonin against SMMC-7721 and L-02 cells was 8.041 μmol/L and 31.75 μmol/L, respectively. Treatment with shikonin significantly inhibited the protein expressions of PKM2, HIF-1α and PHD3 and nuclear translocation of PKM2 and HIF-1α in SMMC-7721 cells. Coimmunoprecipitation and immunofluorescence staining confirmed that shikonin inhibited the formation of PKM2/PHD3/HIF-1α complex and significantly reduced the contents of lactic acid and ATP in SMMC-7721 cells (P < 0.05). The expressions of PHD3 and HIF-1α decreased significantly after PKM2 knockdown (P < 0.05). Shikonin treatment significantly increased the apoptosis rate, enhanced the expressions of Bax and cleaved caspase-3, and decreased Bcl-2 expression in SMMC-7721 cells (P < 0.05).
CONCLUSIONS
Shikonin induces apoptosis of SMMC-7721 cells possibly by inhibiting aerobic glycolysis through the PKM2/PHD3/HIF-1α signaling pathway to cause energy supply dysfunction in the cells.
Humans
;
Prolyl Hydroxylases
;
Carcinoma, Hepatocellular
;
Caspase 3
;
bcl-2-Associated X Protein
;
Liver Neoplasms
;
Signal Transduction
;
Apoptosis
;
Adenosine Triphosphate
3.Clinical, genetic, and pathological analysis in 165 children with disorders of sex development.
Yan-Yan CAO ; Ke-Xin ZANG ; Ying-Ye LIU ; Qiang ZHANG ; Yun ZHOU ; Shuang ZHANG ; Yao-Fang XIA ; Lei LIU ; Xiao-Xiao CHEN ; Shi-Meng ZHAO ; Li-Jun LIU ; Xiao-Wei CUI
Chinese Journal of Contemporary Pediatrics 2023;25(11):1124-1130
OBJECTIVES:
To investigate the clinical phenotypes, genetic characteristics, and pathological features of children with disorders of sex development (DSD).
METHODS:
A retrospective analysis was conducted on epidemiological, clinical phenotype, chromosomal karyotype, gonadal pathology, and genotype data of 165 hospitalized children with DSD at Children's Hospital of Hebei Province and Tangshan Maternal and Child Health Hospital from August 2008 to December 2022.
RESULTS:
Among the 165 children with DSD, common presenting symptoms were short stature (62/165, 37.6%), clitoromegaly (33/165, 20.0%), cryptorchidism (28/165, 17.0%), hypospadias (24/165, 14.5%), and skin pigmentation abnormalities/exteriorized pigmented labia majora (19/165, 11.5%). Chromosomal karyotype analysis was performed on 127 cases, revealing 36 cases (28.3%) of 46,XX DSD, 34 cases (26.8%) of 46,XY DSD, and 57 cases (44.9%) of sex chromosome abnormalities. Among the sex chromosome abnormal karyotypes, the 45,X karyotype (11/57, 19%) and 45,X/other karyotype mosaicism (36/57, 63%) were more common. Sixteen children underwent histopathological biopsy of gonadal tissues, resulting in retrieval of 25 gonadal tissues. The gonadal tissue biopsies revealed 3 cases of testes, 3 cases of dysplastic testes, 6 cases of ovaries, 11 cases of ovotestes, and 1 case each of streak gonad and agenesis of gonads. Genetic testing identified pathogenic/likely pathogenic variants in 23 cases (23/36, 64%), including 12 cases of 21-hydroxylase deficiency congenital adrenal hyperplasia caused by CYP21A2 pathogenic variants.
CONCLUSIONS
Short stature, clitoromegaly, cryptorchidism, hypospadias, and skin pigmentation abnormalities are common phenotypes in children with DSD. 45,X/other karyotype mosaicism and CYP21A2 compound heterozygous variants are major etiological factors in children with DSD. The most commonly observed gonadal histopathology in children with DSD includes ovotestes, ovaries, and testes/dysgenetic testes.
Male
;
Humans
;
Child
;
Disorders of Sex Development/pathology*
;
Hypospadias/complications*
;
Cryptorchidism/complications*
;
Retrospective Studies
;
Adrenal Hyperplasia, Congenital
;
Steroid 21-Hydroxylase
4.Analysis of the association of CYP450 gene polymorphisms with ischemic stroke.
Lin QI ; Yongfang LIU ; Meng QI ; Yingjuan PENG ; Guangming SUN ; Ying YUE
Chinese Journal of Medical Genetics 2023;40(4):500-504
OBJECTIVE:
To assess the association of cytochrome P450 (CYP450) gene polymorphisms with the occurrence of ischemic stroke (IS).
METHODS:
From January 2020 to August 2022, 390 IS patients treated at the Zhengzhou Seventh People's Hospital were enrolled as the study group, and 410 healthy individuals undergoing physical examination during the same period were enrolled as the control group. Clinical data of all subjects were collected, which included age, sex, body mass index (BMI), smoking history and results of laboratory tests. Chi-square test and independent sample t test were used for comparing the clinical data. Multivariate logistic regression analysis was used to analyze the non-hereditary independent risk factors for IS. Fasting blood samples of the subjects were collected, and the genotypes of rs4244285, rs4986893, rs12248560 of the CYP2C19 gene and rs776746 of the CYP3A5 gene were determined by Sanger sequencing. The frequency of each genotype was calculated by using SNPStats online software. The association between the genotype and IS under the dominant, recessive and additive models was analyzed.
RESULTS:
The levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C), apolipoprotein B (Apo-B) and homocysteine (Hcy) of the case group were significantly higher than those of the control group, whilst the levels of high density lipoprotein (HDL-C) and Apo-A1 (APO-A1) were significantly lower (P < 0.05). Multivariate Logistic regression analysis showed that TC (95%CI = 1.13-1.92, P = 0.02), LD-C (95%CI = 1.03-2.25, P = 0.03), Apo-A1 (95%CI = 1.05-2.08, P = 0.04), Apo-B (95%CI = 1.7-4.22, P < 0.01) and Hcy (95%CI = 1.12-1.83, P = 0.04) were non-genetic independent risk factors for the occurrence of IS. Analysis of the association between the genetic polymorphisms and the risk of IS showed that the AA genotype at rs4244285 of the CYP2C19 gene, the AG genotype and A allele at rs4986893 of the CYP2C19 gene, and the GG genotype and G allele at rs776746 of the CYP3A5 gene were significantly associated with IS. Under the recessive/additive model, dominant model and dominant/additive model, polymorphisms of the rs4244285, rs4986893 and rs776746 loci were also significantly associated with the IS.
CONCLUSION
TC, LDL-C, Apo-A1, Apo-B and Hcy can all affect the occurrence of IS, and CYP2C19 and CYP3A5 gene polymorphisms are closely associated with the IS. Above finding has confirmed that the CYP450 gene polymorphisms can increase the risk of IS, which may provide a reference for the clinical diagnosis.
Humans
;
Cytochrome P-450 CYP3A/genetics*
;
Cytochrome P-450 CYP2C19/genetics*
;
Ischemic Stroke
;
Cholesterol, LDL/genetics*
;
Polymorphism, Single Nucleotide
;
Genotype
;
Apolipoproteins B/genetics*
;
Gene Frequency
5.Consensus on laboratory diagnosis of congenital adrenal hyperplasia due to 21 hydroxylase deficiency.
Yu SUN ; Lingqian WU ; Lei YE ; Wenjuan QIU ; Yongguo YU ; Xuefan GU
Chinese Journal of Medical Genetics 2023;40(7):769-780
21 hydroxylase deficiency (21-OHD), the most common form of congenital adrenal hyperplasia, is caused by defects in CYP21A2 gene, which encodes the cytochrome P450 oxidase (P450C21) involved in glucocorticoid and mineralocorticoid synthesis. The diagnosis of 21-OHD is based on the comprehensive evaluation of clinical manifestation, biochemical alteration and molecular genetics results. Due to the complex structure of CYP21A2, special techniques are required to perform delicate analysis to avoid the interference of its pseudogene. Recently, the state-of-the-art diagnostic methods were applied to the clinic gradually, including the steroid hormone profiling and third generation sequencing. To standardize the laboratory diagnosis of 21-OHD, this consensus was drafted on the basis of the extensive knowledge, the updated progress and the published consensuses and guidelines worldwide by expert discussion organized by Rare Diseases Group of Pediatric Branch of Chinese Medical Association, Medical Genetics Branch of Chinese Medical Doctor Association, Birth Defect Prevention and Molecular Genetics Branch of China Maternal and Child Health Association. and Molecular Diagnosis Branch of Shanghai Medical Association.
Child
;
Humans
;
Adrenal Hyperplasia, Congenital/genetics*
;
Steroid 21-Hydroxylase/genetics*
;
Consensus
;
China
;
Clinical Laboratory Techniques
;
Mutation
7.Adaptation of the electron transport chain improves the biocatalytic efficiency of progesterone 17α hydroxylation.
Lanlan WANG ; Xin ZHAO ; Jie LI ; Jiaying AI ; Jing SUN ; Shuhong MAO
Chinese Journal of Biotechnology 2023;39(11):4608-4620
17α hydroxylase is a key enzyme for the conversion of progesterone to prepare various progestational drug intermediates. To improve the specific hydroxylation capability of this enzyme in steroid biocatalysis, the CYP260A1 derived from cellulose-mucilaginous bacteria Sorangium cellulosum Soce56 and the Fpr and bovine adrenal-derived Adx4-108 derived from Escherichia coli str. K-12 were used to construct a new electron transfer system for the conversion of progesterone. Selective mutation of CYP260A1 resulted in a mutant S276I with significantly enhanced 17α hydroxylase activity, and the yield of 17α-OH progesterone reached 58% after optimization of the catalytic system in vitro. In addition, the effect of phosphorylation of the ferredoxin Adx4-108 on 17α hydroxyl activity was evaluated using a targeted mutation technique, and the results showed that the mutation Adx4-108T69E transferred electrons to S276I more efficiently, which further enhanced the catalytic specificity in the C17 position of progesterone, and the yield of 17α-OH progesterone was eventually increased to 74%. This study provides a new option for the production of 17α-OH progesterone by specific transformation of bacterial-derived 17α hydroxylase, and lays a theoretical foundation for the industrial production of progesterone analogs using biotransformation method.
Animals
;
Cattle
;
Progesterone/metabolism*
;
Hydroxylation
;
Biocatalysis
;
Electron Transport
;
Mixed Function Oxygenases/metabolism*
8.Theoretical analysis and practical applications of the catalytic mechanism of flavonoid 6-hydroxylase.
Jie BAI ; Congyu LI ; Hejian ZHANG ; Rong HUANG ; Lei ZHANG ; Qian WANG ; Xiaonan LIU ; Jianmei LUO ; Huifeng JIANG
Chinese Journal of Biotechnology 2023;39(11):4635-4646
Insufficient catalytic efficiency of flavonoid 6-hydroxylases in the fermentative production of scutellarin leads to the formation of at least about 18% of by-products. Here, the catalytic mechanisms of two flavonoid 6-hydroxylases, CYP82D4 and CYP706X, were investigated by molecular dynamics simulations and quantum chemical calculations. Our results show that CYP82D4 and CYP706X have almost identical energy barriers at the rate-determining step and thus similar reaction rates, while the relatively low substrate binding energy of CYP82D4 may facilitate product release, which is directly responsible for its higher catalytic efficiency. Based on the study of substrate entry and release processes, the catalytic efficiency of the L540A mutation of CYP82D4 increased by 1.37-fold, demonstrating the feasibility of theoretical calculations-guided engineering of flavonoid 6-hydroxylase. Overall, this study reveals the catalytic mechanism of flavonoid 6-hydroxylases, which may facilitate the modification and optimization of flavonoid 6-hydroxylases for efficient fermentative production of scutellarin.
Cytochrome P-450 Enzyme System/metabolism*
;
Apigenin
;
Glucuronates
9.Analysis of clinical phenotype and genotype of Chinese children with disorders of sex development.
Hu LIN ; Hao YANG ; Jun Fen FU ; Jin Na YUAN ; Ke HUANG ; Wei WU ; Guan Ping DONG ; Hong Juan TIAN ; De Hua WU ; Da Xing TANG ; Ding Wen WU ; Li Ying SUN ; Ya Lei PI ; Li Jun LIU ; Li Ping SHI ; Wei GU ; Lu Gang HUANG ; Yi Hua WANG ; Lin Qi CHEN ; Hong Ying LI ; Yang YU ; Hai Yan WEI ; Xin Ran CHENG ; Xiao Ou SHAN ; Yu LIU ; Xu XU ; Shu LIU ; Xiao Ping LUO ; Yan Feng XIAO ; Yu YANG ; Gui Mei LI ; Mei FENG ; Xiu Qi MA ; Dao Xiang PAN ; Jia Yan TANG ; Rui Min CHEN ; Mireguli MAIMAITI ; De Yun LIU ; Xin Hai CUI ; Zhe SU ; Zhi Qiao DONG ; Li ZOU ; Yan Ling LIU ; Jin WU ; Kun Xia LI ; Yuan LI
Chinese Journal of Pediatrics 2022;60(5):435-441
Objective: To explore the heterogeneity and correlation of clinical phenotypes and genotypes in children with disorders of sex development (DSD). Methods: A retrospective study of 1 235 patients with clinically proposed DSD in 36 pediatric medical institutions across the country from January 2017 to May 2021. After capturing 277 DSD-related candidate genes, second-generation sequencing was performed to analyzed the heterogeneity and correlation combined with clinical phenotypes. Results: Among 1 235 children with clinically proposed DSD, 980 were males and 255 were females of social gender at the time of initial diagnosis with the age ranged from 1 day of age to 17.92 years. A total of 443 children with pathogenic variants were detected through molecular genetic studies, with a positive detection rate of 35.9%. The most common clinical phenotypes were micropenis (455 cases), hypospadias (321 cases), and cryptorchidism (172 cases) and common mutations detected were in SRD5A2 gene (80 cases), AR gene (53 cases) and CYP21A2 gene (44 cases). Among them, the SRD5A2 mutation is the most common in children with simple micropenis and simple hypospadias, while the AMH mutation is the most common in children with simple cryptorchidism. Conclusions: The SRD5A2 mutation is the most common genetic variant in Chinese children with DSD, and micropenis, cryptorchidism, and hypospadias are the most common clinical phenotypes. Molecular diagnosis can provide clues about the biological basis of DSD, and can also guide clinicians to perform specific clinical examinations. Target sequence capture probes and next-generation sequencing technology can provide effective and economical genetic diagnosis for children with DSD.
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics*
;
Child
;
China/epidemiology*
;
Cryptorchidism/genetics*
;
Disorders of Sex Development/genetics*
;
Female
;
Genital Diseases, Male
;
Genotype
;
Humans
;
Hypospadias/genetics*
;
Male
;
Membrane Proteins/genetics*
;
Penis/abnormalities*
;
Phenotype
;
Retrospective Studies
;
Steroid 21-Hydroxylase/genetics*
10.Identification of a cytochrome P450 from Tripterygium hypoglaucum (Levl.) Hutch that catalyzes polpunonic acid formation in celastrol biosynthesis.
Xiao-Chao CHEN ; Yun LU ; Yuan LIU ; Jia-Wei ZHOU ; Yi-Feng ZHANG ; Hai-Yun GAO ; Dan LI ; Wei GAO
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):691-700
Tripterygium hypoglaucum (Levl.) Hutch, a traditional Chinese medicinal herb with a long history of use, is widely distributed in China. One of its main active components, celastrol, has great potential to be developed into anti-cancer and anti-obesity drugs. Although it exhibits strong pharmacological activities, there is a lack of sustainable sources of celastrol and its derivatives, making it crucial to develop novel sources of these drugs through synthetic biology. The key step in the biosynthesis of celastrol is considered to be the cyclization of 2,3-oxidosqualene into friedelin under the catalysis of 2,3-oxidosqualene cyclases. Friedelin was speculated to be oxidized into celastrol by cytochrome P450 oxidases (CYP450s). Here, we reported a cytochrome P450 ThCYP712K1 from Tripterygium hypoglaucum (Levl.) Hutch that catalyzed the oxidation of friedelin into polpuonic acid when heterologously expressed in yeast. Through substrate supplementation and in vitro enzyme analysis, ThCYP712K1 was further proven to catalyze the oxidation of friedelin at the C-29 position to produce polpunonic acid, which is considered a vital step in the biosynthesis of celastrol, and will lay a foundation for further analysis of its biosynthetic pathway.
Anti-Obesity Agents
;
Cytochrome P-450 Enzyme System/metabolism*
;
Pentacyclic Triterpenes
;
Squalene/analogs & derivatives*
;
Tripterygium/metabolism*
;
Triterpenes/metabolism*

Result Analysis
Print
Save
E-mail