1.Expression of TUBB4B in mouse primary spermatocyte GC-2 cells and its regulatory effect on NF-κB and MAPK signaling pathway.
Tongjia LIU ; Wanlun WANG ; Ting ZHANG ; Shuang LIU ; Yanchao BIAN ; Chuanling ZHANG ; Rui XIAO
Journal of Southern Medical University 2023;43(6):1002-1009
OBJECTIVE:
To explore the interaction between Tubulin beta 4B class IVb (TUBB4B) and Agtpbp1/cytosolic carboxypeptidase- like1 (CCP1) in mouse primary spermatocytes (GC-2 cells) and the role of TUBB4B in regulating the development of GC-2 cells.
METHODS:
Lentiviral vectors were used to infect GC-2 cells to construct TUBB4B knockdown and negative control (NC-KD) cells. The stable cell lines with TUBB4B overexpression (Tubb4b-OE) and the negative control (NC-OE) cells were screened using purinomycin. RT-qPCR and Western blotting were used to verify successful cell modeling and explore the relationship between TUBB4B and CCP1 expressions in GC-2 cells. The effects of TUBB4B silencing and overexpression on the proliferation and cell cycle of GC-2 cells were evaluated using CCK8 assay and flow cytometry. The signaling pathway proteins showing significant changes in response to TUBB4B silencing or overexpression were identified using Western blotting and immunofluorescence assay and then labeled for verification at the cellular level.
RESULTS:
Both TUBB4B silencing and overexpression in GC-2 cells caused consistent changes in the mRNA and protein expressions of CCP1 (P < 0.05). Similarly, TUBB4B expression also showed consistent changes at the mRNA and protein after CCP1 knockdown and restoration (P < 0.05). TUBB4B knockdown and overexpression had no significant effect on proliferation rate or cell cycle of GC-2 cells, but caused significant changes in the key proteins of the nuclear factor kappa-B (NF-κB) signaling pathway (p65 and p-p65) and the mitogen-activated protein kinase (MAPK) signaling pathway (ErK1/2 and p-Erk1/2) (P < 0.05); CCP1 knockdown induced significant changes in PolyE expression in GC-2 cells (P < 0.05).
CONCLUSIONS
TUBB4B and CCP1 interact via a mutual positive regulation mechanism in GC-2 cells. CCP-1 can deglutamize TUBB4B, and the latter is involved in the regulation of NF-κB and MAPK signaling pathways in primary spermatocytes.
Animals
;
Male
;
Mice
;
GTP-Binding Proteins/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
RNA, Messenger
;
Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism*
;
Signal Transduction
;
Spermatocytes
;
Tubulin/genetics*
2.Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis.
Wen-Peng XIE ; Teng MA ; Yan-Chen LIANG ; Xiang-Peng WANG ; Rong-Xiu BI ; Wei-Guo WANG ; Yong-Kui ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4843-4851
To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1β(IL-1β) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1β showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.
Rats
;
Animals
;
Chondrocytes
;
Osteoarthritis, Knee/pathology*
;
RNA, Circular/pharmacology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
MicroRNAs/metabolism*
;
Apoptosis
;
Autophagy/genetics*
;
Collagen/metabolism*
3.Tetrahydropalmatine alleviated diabetic neuropathic pain by inhibiting activation of microglia via p38 MAPK signaling pathway.
Lian-Zhi CHENG ; Jia-Mei ZHOU ; Jun-Long MA ; Fan-Jing WANG ; Kai CHENG ; Qian CHEN ; Hui-Lun YUAN ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2022;47(9):2533-2540
Neuropathic pain is one of the common complications of diabetes. Tetrahydropalmatine(THP) is a main active component of Corydalis Rhizoma with excellent anti-inflammatory and pain-alleviating properties. This study aims to investigate the therapeutic effect of THP on diabetic neuropathic pain(DNP) and the underlying mechanism. High-fat and high-sugar diet(4 weeks) and streptozotocin(STZ, 35 mg·kg~(-1), single intraperitoneal injection) were employed to induce type-2 DNP in rats. Moreover, lipopolysaccharide(LPS) was used to induce the activation of BV2 microglia in vitro to establish an inflammatory cellular model. Fasting blood glucose(FBG) was measured by a blood glucose meter. Mechanical withdrawal threshold(MWT) was assessed with von Frey filaments, and thermal withdrawal latency(TWL) with hot plate apparatus. The protein expression levels of OX42, inducible nitric oxide synthase(iNOS), CD206, p38, and p-p38 were determined by Western blot, the fluorescence expression levels of OX42 and p-p38 in the dorsal horn of the rat spinal cord by immunofluorescence, the mRNA content of p38 and OX42 in rat spinal cord tissue by qRT-PCR, and levels of nitric oxide(NO), interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and serum fasting insulin(FINS) by enzyme-linked immunosorbent assay(ELISA). RESULTS:: showed that the mo-del group demonstrated significant decrease in MWT and TWL, with pain symptoms. THP significantly improved the MWT and TWL of DNP rats, inhibited the activation of microglia and p38 MAPK signaling pathway in rat spinal cord, and ameliorated its inflammatory response. Meanwhile, THP promoted the change of LPS-induced BV2 microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, suppressed the activation of the p38 MAPK signaling pathway, decreased the expression levels of inflammatory factors NO, IL-1β, IL-6, and TNF-α, and increased the expression level of anti-inflammatory factor IL-10. The findings suggested that THP can significantly ameliorate the pain symptoms of DNP rats possibly by inhibiting the inflammatory response caused by M1 polarization of microglia via the p38 MAPK pathway.
Animals
;
Berberine Alkaloids
;
Blood Glucose/metabolism*
;
Diabetes Mellitus
;
Diabetic Neuropathies/genetics*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Microglia
;
Neuralgia/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Spinal Cord/metabolism*
;
Streptozocin/therapeutic use*
;
Tumor Necrosis Factor-alpha/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
4.Identification of BRAF V600E mutation in odontogenic tumors by high-performance MALDI-TOF analysis.
Lucrezia TOGNI ; Antonio ZIZZI ; Roberta MAZZUCCHELLI ; Andrea SANTARELLI ; Corrado RUBINI ; Marco MASCITTI
International Journal of Oral Science 2022;14(1):22-22
Odontogenic tumors are rare lesions with unknown etiopathogenesis. Most of them are benign, but local aggressiveness, infiltrative potential, and high recurrence rate characterize some entities. The MAP-kinase pathway activation can represent a primary critical event in odontogenic tumorigenesis. Especially, the BRAF V600E mutation has been involved in 80-90% of ameloblastic lesions, offering a biological rationale for developing new targeted therapies. The study aims to evaluate the BRAF V600E mutation in odontogenic lesions, comparing three different detection methods and focusing on the Sequenom MassARRAY System. 81 surgical samples of odontogenic lesions were subjected to immunohistochemical analysis, Sanger Sequencing, and Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (Sequenom). The BRAF V600E mutation was revealed only in ameloblastoma samples. Moreover, the presence of BRAF V600E was significantly associated with the mandibular site (ρ = 0.627; P value <0.001) and the unicystic histotype (ρ = 0.299, P value <0.001). However, any significant difference of 10-years disease-free survival time was not revealed. Finally, Sequenom showed to be a 100% sensitive and 98.1% specific, suggesting its high-performance diagnostic accuracy. These results suggest the MAP-kinase pathway could contribute to ameloblastic tumorigenesis. Moreover, they could indicate the anatomical specificity of the driving mutations of mandibular ameloblastomas, providing a biological rational for developing new targeted therapies. Finally, the high diagnostic accuracy of Sequenom was confirmed.
Ameloblastoma/pathology*
;
Carcinogenesis
;
Humans
;
Mitogen-Activated Protein Kinases/genetics*
;
Mutation
;
Odontogenic Tumors/pathology*
;
Proto-Oncogene Proteins B-raf/metabolism*
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.Activity of Codonopsis canescens against rheumatoid arthritis based on TLRs/MAPKs/NF-κB signaling pathways and its mechanism.
Yu-Jie WANG ; Xiao-Yu ZHONG ; Xin-Hong WANG ; Yuan-Han ZHONG ; Lin LIU ; Fang-Yuan LIU ; Jin-Xiang ZENG ; Ji-Xiao ZHU ; Xiao-Lang DU ; Min LI ; Gang REN ; Guo-Yue ZHONG ; Xiao-Min WANG
China Journal of Chinese Materia Medica 2022;47(22):6164-6174
This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1β, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1β, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.
Animals
;
Cattle
;
Male
;
Rats
;
Arthritis, Experimental/drug therapy*
;
Arthritis, Rheumatoid/drug therapy*
;
Body Weight
;
Codonopsis/chemistry*
;
Interleukin-6/blood*
;
NF-kappa B/genetics*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Plant Extracts/therapeutic use*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 2/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/pharmacology*
6.Effects of MD2 gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
Zhong-Min LIN ; Guo-Rong CHEN ; Quan-Bo ZHANG ; Fang WANG ; Lan-Ting XIANG ; Qiong-Jie CAO
Chinese Journal of Applied Physiology 2019;35(3):273-278
OBJECTIVE:
To investigate the effects of myeloid differentiation-2 (MD2) gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
METHODS:
The immortalized rat cardiomyocyte cell line H9C2 were transfected with MD2 small interfering RNA (si-MD2) and negative control for 24 h, then stimulated with high glucose (HG) for 48 h. RT-qPCR was performed to detect the mRNA levels of MD2 and inflammatory factors TNF-α, IL-1β and IL-6. MTS and flow cytometry were used to evaluate cell proliferation, cell cycle and apoptosis rate. Western blot was used to detect protein expression levels and phosphorylation levels.
RESULTS:
The mRNA and protein levels of MD2 in H9C2 cells were dramatically decreased after transfected with si-MD2 (P<0.01). After stimulation of high glucose, the mRNA levels of inflammatory factors, the cells in G0/G1 phase , the cell apoptosis rate and the protein level of cleaved Caspase-3 were significantly increased, while the cell proliferation ability was decreased (P<0.01). MD2 gene silencing antagonized the effects of high glucose on cell proliferation, cell cycle, cell apoptosis and the mRNA levels of TNF-α, IL-1β , IL-6(P<0.05). Western blot analysis showed that the phosphorylation levels of extracellular signal-regulated kinase(ERK1/2), P38 mitogen-activated protein kinase(P38 MAPK) and C-Jun N-terminal kinase(JNK) protein were increased significantly in H9C2 cells treated with high glucose, which could be reversed by silencing of MD2 (P<0.01).
CONCLUSION
This study demonstrates that MD2 gene silencing reverses high glucose-induced myocardial inflammation, apoptosis and proliferation inhibition via the mechanisms involving suppression of ERK, P38 MAPK, JNK signaling pathway.
Animals
;
Apoptosis
;
Cell Proliferation
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Gene Silencing
;
Glucose
;
Inflammation
;
JNK Mitogen-Activated Protein Kinases
;
metabolism
;
Lymphocyte Antigen 96
;
genetics
;
Myocytes, Cardiac
;
cytology
;
Rats
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
7.Effects of Shenmai injection on the expression of p38MAPK and the apoptosis-related genes in lung injury induced by intestinal ischemia/reperfusion in rats.
Jia-Han ZHAO ; Yu-Han JIA ; Ya-Ting TANG ; Yi-Xin LIN ; Yan-Lei WANG
Chinese Journal of Applied Physiology 2019;35(1):65-68
OBJECTIVE:
To observe the effects of Shenmai injection(SM) on p38MAPK and the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion (I/R) in rats and to investigate the protective mechanism of SM.
METHODS:
Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery (SMA) for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: control group, intestinal ischemia/reperfusion group(I/R group), Shenmai injection treated group (SM+I/R group). Lung wet/dry weight ratio(W/D), the contents of phosphatidylcholine (PC) and total phospholipid(TPL) which are the major ingredients of pulmonary surfactant were measured, as well as the expression levels of p38MAPK, Bcl-2 and Bax proteins in lung tissue were examined by using immunohistochemical method.
RESULTS:
Compared with control group, lung W/D was significantly increased, the contents of PC and TPL were significantly decreased, the protein expression levels of p38MAPK, Bcl-2 and Bax were significantly increased in I/R group (all P<0.01). But Bax protein expression was much greater than Bcl-2 protein expression, the ratio of Bcl-2 to Bax were significantly decreased in I/R group than that in control group (P<0.01). Compared with I/R group, lung W/D was significantly decreased, while the contents of PC and TPL were significantly increased, the p38MAPK and Bax protein expression levels were significantly decreased in SM+I/R group (all P<0.01); both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SM+I/R group than those in I/R group (P<0.01). The correlation analysis indicated that the expression level of p38MAPK protein in lung tissue was negatively correlated with the contents of PC and the ratio of Bcl-2 to Bax (r is -0.787 and -0.731, all P<0.01).
CONCLUSION
SM can protect the lung injury induced by intestinal I/R injury, which may be mediated by inhibiting the activation of p38MAPK, improving the ratio of Bcl-2 to Bax to inhibit lung apoptosis.
Animals
;
Apoptosis
;
Drug Combinations
;
Drugs, Chinese Herbal
;
pharmacology
;
Lung Injury
;
drug therapy
;
genetics
;
Proto-Oncogene Proteins c-bcl-2
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
complications
;
bcl-2-Associated X Protein
;
p38 Mitogen-Activated Protein Kinases
;
drug effects
;
metabolism
8.Protective effects of extracts of Schisandra chinensis stems against acetaminophen-induced hepatotoxicity via regulation of MAPK and caspase-3 signaling pathways.
Yan-Zi LI ; Zhi-Na MA ; Yin-Shi SUN ; Shen REN ; Shuang JIANG ; Wei-Zhe ZHANG ; Zi WANG ; Wei LI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(9):700-713
The present study was designed to evaluate protective activity of an ethanol extract of the stems of Schisandra chinensis (SCE) and explore its possible molecular mechanisms on acetaminophen (APAP) induced hepatotoxicity in a mouse model. The results of HPLC analysis showed that the main components of SCE included schisandrol A, schisandrol B, deoxyschisandrin, schisandrin B, and schisandrin C and their contents were 5.83, 7.11, 2.13, 4.86, 0.42 mg·g, respectively. SCE extract was given for 7 consecutive days before a single hepatotoxic dose of APAP (250 mg·kg) was injected to mice. Our results showed that SCE pretreatment ameliorated liver dysfunction and oxidative stress, which was evidenced by significant decreases in aspartate transaminase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) contents and elevations in reduced glutathione (GSH) and superoxide dismutase (SOD) levels. These findings were associated with the result that the SCE pretreatment significantly decreased expression levels of 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT). SCE also significantly decreased the expression levels of Bax, mitogen- activated protein kinase (MAPK), and cleaved caspase-3 by APAP exposure. Furthermore, supplementation with SCE suppressed the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), suggesting alleviation of inflammatory response. In summary, these findings from the present study clearly demonstrated that SCE exerted significant alleviation in APAP-induced oxidative stress, inflammation and apoptosis mainly via regulating MAPK and caspase-3 signaling pathways.
Acetaminophen
;
adverse effects
;
Alanine Transaminase
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Aspartate Aminotransferases
;
metabolism
;
Caspase 3
;
genetics
;
metabolism
;
Chemical and Drug Induced Liver Injury
;
genetics
;
metabolism
;
physiopathology
;
prevention & control
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Glutathione
;
metabolism
;
Humans
;
Liver
;
drug effects
;
metabolism
;
Male
;
Malondialdehyde
;
metabolism
;
Mice
;
Mice, Inbred ICR
;
Mitogen-Activated Protein Kinases
;
chemistry
;
genetics
;
metabolism
;
Oxidative Stress
;
drug effects
;
Schisandra
;
chemistry
;
Signal Transduction
;
drug effects
9.Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways.
Qiang ZENG ; Chun-Hay KO ; Wing-Sum SIU ; Kai-Kai LI ; Chun-Wai WONG ; Xiao-Qiang HAN ; Liu YANG ; Clara Bik-San LAU ; Jiang-Miao HU ; Ping-Chung LEUNG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):481-489
Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cyclooxygenase 2
;
genetics
;
Cytokines
;
metabolism
;
Dendrobium
;
chemistry
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Inflammation
;
chemically induced
;
drug therapy
;
Lipopolysaccharides
;
Macrophages
;
drug effects
;
enzymology
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type II
;
genetics
;
Phosphorylation
;
drug effects
;
Plant Extracts
;
pharmacology
;
RAW 264.7 Cells
;
Signal Transduction
;
drug effects
10.Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease.
Jun-Ting YANG ; Zhao-Jun WANG ; Hong-Yan CAI ; Li YUAN ; Meng-Ming HU ; Mei-Na WU ; Jin-Shun QI
Neuroscience Bulletin 2018;34(5):736-746
Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38-mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.
Alzheimer Disease
;
metabolism
;
pathology
;
psychology
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Disease Models, Animal
;
Female
;
Hippocampus
;
metabolism
;
pathology
;
Humans
;
Inflammation
;
metabolism
;
pathology
;
psychology
;
Male
;
Maze Learning
;
physiology
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Neurofibrillary Tangles
;
metabolism
;
pathology
;
Plaque, Amyloid
;
metabolism
;
pathology
;
psychology
;
Presenilin-1
;
genetics
;
metabolism
;
Sex Characteristics
;
Spatial Memory
;
physiology
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
;
tau Proteins
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail