1.Hyperbaric Oxygen Pretreatment Improves Cognition and Reduces Hippocampal Damage Via p38 Mitogen-Activated Protein Kinase in a Rat Model.
Baisong ZHAO ; Yongying PAN ; Zixin WANG ; Haiping XU ; Xingrong SONG
Yonsei Medical Journal 2017;58(1):131-138
PURPOSE: To investigate the effects of hyperbaric oxygen (HBO) pretreatment on cognitive decline and neuronal damage in an Alzheimer’s disease (AD) rat model. MATERIALS AND METHODS: Rats were divided into three groups: normal saline (NS), AD, and HBO+AD. In the AD group, amyloid β peptide (Aβ)₁₋₄₀ was injected into the hippocampal CA1 region of the brain. NS rats received NS injection. In the HBO+AD group, rats received 5 days of daily HBO therapy following Aβ₁₋₄₀ injection. Learning and memory capabilities were examined using the Morris water maze task. Neuronal damage and astrocyte activation were evaluated by hematoxylin-eosin staining and immunohistochemistry, respectively. Dendritic spine density was determined by Golgi-Cox staining. Tumor necrosis factor-α, interleukin-1β, and interleukin-10 production was assessed by enzyme-linked immunosorbent assay. Neuron apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Protein expression was examined by western blotting. RESULTS: Learning and memory dysfunction was ameliorated in the HBO+AD group, as shown by significantly lower swimming distances and escape latency, compared to the AD group. Lower rates of neuronal damage, astrocyte activation, dendritic spine loss, and hippocampal neuron apoptosis were seen in the HBO+AD than in the AD group. A lower rate of hippocampal p38 mitogen-activated protein kinase (MAPK) phosphorylation was observed in the HBO+AD than in the AD group. CONCLUSION: HBO pretreatment improves cognition and reduces hippocampal damage via p38 MAPK in AD rats.
Alzheimer Disease/*therapy
;
Amyloid beta-Peptides/*administration & dosage
;
Animals
;
Apoptosis
;
*Cognition/drug effects
;
Disease Models, Animal
;
Enzyme-Linked Immunosorbent Assay
;
Hippocampus/*enzymology
;
*Hyperbaric Oxygenation
;
In Situ Nick-End Labeling
;
Interleukin-10/biosynthesis
;
Interleukin-1beta/biosynthesis
;
Learning/drug effects
;
Male
;
Memory/drug effects
;
Neurons
;
Peptide Fragments/*administration & dosage
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Chloride/administration & dosage
;
Tumor Necrosis Factor-alpha/biosynthesis
;
p38 Mitogen-Activated Protein Kinases/*metabolism
2.alpha-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-Infected Gastric Epithelial AGS Cells.
Ji Hyun CHOI ; Soon Ok CHO ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(1):260-264
The epithelial cytokine response, associated with reactive oxygen species (ROS), is important in Helicobacter pylori (H. pylori)-induced inflammation. H. pylori induces the production of ROS, which may be involved in the activation of mitogen-activated protein kinases (MAPK), janus kinase/signal transducers and activators of transcription (Jak/Stat), and oxidant-sensitive transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), and thus, expression of interleukin-8 (IL-8) in gastric epithelial cells. alpha-lipoic acid, a naturally occurring thiol compound, is a potential antioxidant. It shows beneficial effects in treatment of oxidant-associated diseases including diabetes. The present study is purposed to investigate whether alpha-lipoic acid inhibits expression of inflammatory cytokine IL-8 by suppressing activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-infected gastric epithelial cells. Gastric epithelial AGS cells were pretreated with or without alpha-lipoic acid for 2 h and infected with H. pylori in a Korean isolate (HP99) at a ratio of 300:1. IL-8 mRNA expression was analyzed by RT-PCR analysis. IL-8 levels in the medium were determined by enzyme-linked immunosorbent assay. NF-kappaB-DNA binding activity was determined by electrophoretic mobility shift assay. Phospho-specific and total forms of MAPK and Jak/Stat were assessed by Western blot analysis. ROS levels were determined using dichlorofluorescein fluorescence. As a result, H. pylori induced increases in ROS levels, mRNA, and protein levels of IL-8, as well as the activation of MAPK [extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase 1/2 (JNK1/2), p38], Jak/Stat (Jak1/2, Stat3), and NF-kappaB in AGS cells, which was inhibited by alpha-lipoic acid. In conclusion, alpha-lipoic acid may be beneficial for prevention and/or treatment of H. pylori infection-associated gastric inflammation.
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells/metabolism
;
Gastric Mucosa/*drug effects/metabolism/microbiology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/drug effects/*pathogenicity
;
Humans
;
Interleukin-8/genetics/*metabolism
;
JNK Mitogen-Activated Protein Kinases
;
Janus Kinase 1
;
Mitogen-Activated Protein Kinases/*biosynthesis
;
NF-kappa B/*metabolism
;
RNA, Messenger/isolation & purification/metabolism
;
Reactive Oxygen Species/metabolism
;
STAT3 Transcription Factor
;
Stomach/metabolism/*microbiology
;
Thioctic Acid/*pharmacology
3.Glycyrrhizin inhibits human neutrophil elastase-induced mucin 5AC overproduction in human bronchial epithelial cells.
Qingrong XIAO ; Xiangdong ZHOU
Journal of Central South University(Medical Sciences) 2014;39(3):252-257
OBJECTIVE:
To investigate the effect of glycyrrhizin (Gly) on human neutrophil elastase (HNE)- induced mucin (MUC) 5AC overproduction in human bronchial epithelial cells (16HBE), and the potential signaling pathway involved in this process.
METHODS:
The cultured cells were divided into 3 groups: a control group, cultured in serum-free DMEM medium; an HNE group, pretreated with HNE alone; and a Gly group, incubated with HNE and Gly. After stimulation with a variety of Gly concentrations, the cytotoxicity was assessed by methyl thiazolyl tetrazolium method. The mRNA expressions of p38, nuclear factor κB (NF-κB) p65, inhibitory κBα (IκBα) and MUC5AC were detected by real-time PCR. The phosphorylation levels of p38 (p-p38), NF-κB p65 (p-NF-κB p65) and IκBα (p-IκBα) were measured by Western blot while the levels of MUC5AC protein were analyzed by emzyme-linked immunosorbent assay and immunofluorescence.
RESULTS:
Compared with the control group, the expression levels of MUC5AC mRNA and protein in the HNE group were both significantly increased. There was a significant increase in p-p38 and p-NF-κB p65, while the production of IκBα was much lower than that in the control group. Gly significantly inhibited the increase of MUC5AC, p38 and NF-κB p65, but increased the activity of IκBα.
CONCLUSION
Glycyrrhizin can inhibit MUC5AC overproduction via p38-NF-κB p65/IκBα signaling pathway.
Bronchi
;
cytology
;
Cell Line
;
Epithelial Cells
;
metabolism
;
Glycyrrhizic Acid
;
pharmacology
;
Humans
;
I-kappa B Proteins
;
metabolism
;
Leukocyte Elastase
;
metabolism
;
Mucin 5AC
;
biosynthesis
;
NF-KappaB Inhibitor alpha
;
Phosphorylation
;
Real-Time Polymerase Chain Reaction
;
Signal Transduction
;
Transcription Factor RelA
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
4.Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils.
Young Su JUNG ; Ha Young LEE ; Sang Doo KIM ; Joon Seong PARK ; Jung Kuk KIM ; Pann Ghill SUH ; Yoe Sik BAE
Experimental & Molecular Medicine 2013;45(6):e27-
Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (beta-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.
Activating Transcription Factor 2/metabolism
;
Animals
;
Cell Separation
;
Chemokines/*biosynthesis
;
Chemotaxis/*drug effects
;
Culture Media, Conditioned/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
GTP-Binding Proteins/metabolism
;
Humans
;
JNK Mitogen-Activated Protein Kinases/metabolism
;
Lipopolysaccharides/pharmacology
;
Macrophages/drug effects/metabolism
;
Mice
;
NF-kappa B/metabolism
;
Neutrophils/*cytology/drug effects/enzymology/*metabolism
;
Pertussis Toxin/pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Proto-Oncogene Proteins c-akt/metabolism
;
Receptors, Wnt/metabolism
;
Type C Phospholipases/metabolism
;
Wnt Proteins/*pharmacology
;
p38 Mitogen-Activated Protein Kinases/metabolism
5.Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.
Sung Nam PARK ; Kyung Tae NOH ; Young Il JEONG ; In Duk JUNG ; Hyun Kyu KANG ; Gil Sun CHA ; Su Jung LEE ; Jong Keun SEO ; Dae Hwan KANG ; Tae Ho HWANG ; Eun Kyung LEE ; Byungsuk KWON ; Yeong Min PARK
Experimental & Molecular Medicine 2013;45(2):e8-
We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.
Acute-Phase Proteins/metabolism
;
Adaptor Proteins, Vesicular Transport/metabolism
;
Animals
;
Antigens, CD14/metabolism
;
Bone Marrow Cells/cytology/drug effects
;
CD8-Positive T-Lymphocytes/*immunology
;
Carrier Proteins/metabolism
;
Cell Differentiation/drug effects
;
Cell Nucleus/drug effects/metabolism
;
Cell Proliferation/drug effects
;
Cytokines/biosynthesis
;
Dendritic Cells/cytology/drug effects/enzymology/*immunology
;
Enzyme Activation/drug effects
;
Lymphocyte Activation/*drug effects
;
Membrane Glycoproteins/metabolism
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Mitogen-Activated Protein Kinases/metabolism
;
Myeloid Differentiation Factor 88/metabolism
;
NF-kappa B/metabolism
;
Neoplasms/immunology/*pathology
;
Pectins/*pharmacology
;
Phenotype
;
Protein Transport/drug effects
;
Receptors, Chemokine/metabolism
;
Signal Transduction/drug effects
;
T-Lymphocytes, Cytotoxic/cytology/drug effects
;
Toll-Like Receptor 4/*agonists/metabolism
6.Construction of a recombinant lentiviral vector of p38 MAPK and establishment of a human prostatic carcinoma cell line stably expressing p38 MAPK.
Yu-Ming JING ; Jie LUO ; Yan-Ling ZHANG ; San-San CHEN ; Pei WAN ; Ren-He YAN ; Hong-Chang WANG ; Bai-Hong CHEN ; Wan-Long TAN ; Hong-Wei LI
Journal of Southern Medical University 2012;32(3):317-321
OBJECTIVETo construct a recombinant lentiviral vector for p38 MAPK and establish a human prostatic carcinoma cell line that stably expresses p38 MAPK.
METHODSEGFP/p38 fusion gene was subcloned into the lentiviral vector pTYF- EF1α-IRES-EGFP. The recombinant lentiviral vector pTYF-EF1α-EGFP/p38 was indentified by restriction enzyme digestion, and packaged in HEK 293T cells using lipofectamintm2000 with the packaging plasmid psPAX2 and envelope plasmid pMD2.G. The viral titer was tested according to the expression level of GFP. The resulting recombinant lentiviral vector was transduced into human prostatic carcinoma DU145 cells, and stably transduced cells were selected by limiting dilution analysis. The intracellular expression level of total p38 was detected by Western blotting and the cell growth curve was drawn.
RESULTSDNA restriction enzyme digestion demonstrated that the recombinant lentiviral vector of the fusion gene EGFP/p38 (pTYF-EF1α-EGFP/p38) was constructed successfully. The recombinant lentiviral vector was packaged in 293T with a viral titer of 4.7×10(6) TU/ml. A stable cell line, EGFP/p38-DU145, was established, which stably expressed exogenous EGFP/p38 MAPK fusion protein as detected by Western blotting and showed a lowered growth rate compared to the control cells.
CONCLUSIONWe have successfully constructed a recombinant lentiviral vector of the fusion gene EGFP/p38 and established a stable cell line EGFP/p38-DU145. Overexpression of p38 has a significant inhibitory effect on the proliferation of DU145 cells in vitro.
Cell Line, Tumor ; Cloning, Molecular ; Genetic Vectors ; genetics ; Green Fluorescent Proteins ; genetics ; HEK293 Cells ; Humans ; Lentivirus ; genetics ; metabolism ; Male ; Prostatic Neoplasms ; metabolism ; pathology ; Recombinant Proteins ; biosynthesis ; genetics ; Transfection ; p38 Mitogen-Activated Protein Kinases ; biosynthesis ; genetics
7.12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity.
Jin Wook LEE ; Ho Cheol RYU ; Yee Ching NG ; Cheolmin KIM ; Jun Dong WEI ; Vikineswary SABARATNAM ; Jae Hong KIM
Experimental & Molecular Medicine 2012;44(6):378-386
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-kappaB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-kappaB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases.
Anti-Inflammatory Agents, Non-Steroidal/pharmacology
;
Cell Line
;
Dual Specificity Phosphatase 1/biosynthesis/genetics
;
Enzyme Activation
;
Fatty Acids, Unsaturated/*pharmacology
;
Humans
;
Interleukin-6/*biosynthesis
;
Keratinocytes/*metabolism/radiation effects
;
NF-kappa B/metabolism
;
RNA Interference
;
RNA, Small Interfering
;
Receptors, Leukotriene B4/genetics
;
Signal Transduction/drug effects
;
Skin Diseases/drug therapy
;
*Ultraviolet Rays
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism
8.Cathepsin L derived from skeletal muscle cells transfected with bFGF promotes endothelial cell migration.
Ji Hyung CHUNG ; Eun Kyoung IM ; Taewon JIN ; Seung Min LEE ; Soo Hyuk KIM ; Eun Young CHOI ; Min Jeong SHIN ; Kyung Hye LEE ; Yangsoo JANG
Experimental & Molecular Medicine 2011;43(4):179-188
Gene transfer of basic fibroblast growth factor (bFGF) has been shown to induce significant endothelial migration and angiogenesis in ischemic disease models. Here, we investigate what factors are secreted from skeletal muscle cells (SkMCs) transfected with bFGF gene and whether they participate in endothelial cell migration. We constructed replication-defective adenovirus vectors containing the human bFGF gene (Ad/bFGF) or a control LacZ gene (Ad/LacZ) and obtained conditioned media, bFGF-CM and LacZ-CM, from SkMCs infected by Ad/bFGF or Ad/LacZ, respectively. Cell migration significantly increased in HUVECs incubated with bFGF-CM compared to cells incubated with LacZ-CM. Interestingly, HUVEC migration in response to bFGF-CM was only partially blocked by the addition of bFGF-neutralizing antibody, suggesting that bFGF-CM contains other factors that stimulate endothelial cell migration. Several proteins, matrix metalloproteinase-1 (MMP-1), plasminogen activator inhibitor-1 (PAI-1), and cathepsin L, increased in bFGF-CM compared to LacZ-CM; based on 1-dimensional gel electrophoresis and mass spectrometry. Their increased mRNA and protein levels were confirmed by RT-PCR and immunoblot analysis. The recombinant human bFGF protein induced MMP-1, PAI-1, and cathepsin L expression in SkMCs. Endothelial cell migration was reduced in groups treated with bFGF-CM containing neutralizing antibodies against MMP-1 or PAI-1. In particular, HUVECs treated with bFGF-CM containing cell-impermeable cathepsin L inhibitor showed the most significant decrease in cell migration. Cathepsin L protein directly promotes endothelial cell migration through the JNK pathway. These results indicate that cathepsin L released from SkMCs transfected with the bFGF gene can promote endothelial cell migration.
Antibodies, Neutralizing/immunology
;
Cathepsin L/genetics/*metabolism
;
*Cell Movement
;
Cells, Cultured
;
Comet Assay
;
Dependovirus/genetics
;
Endothelial Cells/cytology/*metabolism
;
Fibroblast Growth Factor 2/genetics/immunology/*metabolism
;
Gene Transfer Techniques
;
Humans
;
Immunoblotting
;
JNK Mitogen-Activated Protein Kinases
;
Lac Operon/genetics
;
Mass Spectrometry
;
Matrix Metalloproteinase 1/biosynthesis/genetics
;
Muscle, Skeletal/*metabolism
;
Neovascularization, Physiologic
;
Plasminogen Activator Inhibitor 1/biosynthesis/genetics
;
RNA, Messenger/biosynthesis
;
Reverse Transcriptase Polymerase Chain Reaction
9.Native Low-Density Lipoprotein-Dependent Interleukin-8 Production Through Pertussis Toxin-Sensitive G-Protein Coupled Receptors and Hydrogen Peroxide Generation Contributes to Migration of Human Aortic Smooth Muscle Cells.
Yonsei Medical Journal 2011;52(3):413-419
PURPOSE: Stimulation of human aortic smooth muscle cells (hAoSMCs) with native low-density lipoprotein (nLDL) induced the production of interleukin-8 (IL-8) that is involved in the pathogenesis of cardiovascular diseases. However, the process of signal transduction of nLDL was currently uncharacterized. Therefore, the aim of this study was to investigate the signal transduction pathway of nLDL-dependent IL-8 production and the effect of IL-8 on hAoSMCs migration. MATERIALS AND METHODS: nLDL was prepared by ultracentrifugation with density-adjusted human serum of normocholesterolemia. In hAoSMCs, IL-8 secreted to medium was measured using ELISA assay, and Western blot analysis was performed to detect p38 MAPK activation as a key regulator of IL-8 production. nLDL-dependent H2O2 generation was determined by microscopic analysis using 2',7'-dichlorofluoroscein diacetate (DCF-DA). IL-8-induced migration of hAoSMCs was evaluated by counting the cell numbers moved to lower chamber using Transwell plates. RESULTS: nLDL-induced IL-8 production was completely blocked by preincubation of hAoSMCs with pertussis toxin (PTX), which inhibited nLDL-dependent p38 MAPK phosphorylation. PTX-sensitive G-protein coupled receptor was responsible for nLDL-dependent H2O2 generation that was abrogated with preincubation of the cells with of polyethylene glycol-conjugated catalase (PEG-Cat). Pretreatment of PEG-Cat prevented nLDL-induced p38 MAPK phosphorylation and IL-8 production, which was partly mimicked by treatment with exogenous H2O2. Finally, IL-8 increased hAoSMCs migration that was completely blocked by incubation with IL-8 neutralizing antibody. CONCLUSION: PTX-sensitive G-protein coupled receptor-dependent H2O2 generation by nLDL plays a critical role in IL-8 production in hAoSMC, and IL-8 may contribute to atherogenesis through increased migration of hAoSMCs.
Cell Movement/*physiology
;
Cells, Cultured
;
Humans
;
Hydrogen Peroxide/*metabolism
;
Interleukin-8/*biosynthesis
;
Lipoproteins, LDL/*pharmacology
;
Muscle, Smooth, Vascular/cytology/*metabolism
;
Myocytes, Smooth Muscle/cytology/*metabolism
;
Pertussis Toxin/pharmacology
;
Phosphorylation/drug effects
;
Reactive Oxygen Species/metabolism
;
Receptors, G-Protein-Coupled/*physiology
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases/metabolism
10.Tissue-specific activation of mitogen-activated protein kinases for expression of transthyretin by phenylalanine and its metabolite, phenylpyruvic acid.
Joo Won PARK ; Mi Hee LEE ; Jin Ok CHOI ; Hae Young PARK ; Sung Chul JUNG
Experimental & Molecular Medicine 2010;42(2):105-115
Phenylketonuria is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase. Transthyretin has been implicated as an indicator of nutritional status in phenylketonuria patients. In this study, we report that phenylalanine and its metabolite, phenylpyruvic acid, affect MAPK, changing transthyretin expression in a cell- and tissue-specific manner. Treatment of HepG2 cells with phenylalanine or phenylpyruvic acid decreased transcription of the TTR gene and decreased the transcriptional activity of the TTR promoter site, which was partly mediated through HNF4alpha. Decreased levels of p38 MAPK were detected in the liver of phenylketonuria-affected mice compared with wild-type mice. In contrast, treatment with phenylalanine increased transthyretin expression and induced ERK1/2 activation in PC-12 cells; ERK1/2 activation was also elevated in the brainstem of phenylketonuria-affected mice. These findings may explain between-tissue differences in gene expression, including Ttr gene expression, in the phenylketonuria mouse model.
Animals
;
Brain Stem/metabolism/pathology
;
Disease Models, Animal
;
Gene Expression Regulation
;
Hep G2 Cells
;
Hepatocyte Nuclear Factor 4/metabolism
;
Humans
;
Liver/*metabolism/pathology
;
Mice
;
Mice, Mutant Strains
;
Mitogen-Activated Protein Kinase 3/genetics/*metabolism
;
Organ Specificity
;
Phenylalanine/metabolism
;
Phenylalanine Hydroxylase/deficiency
;
Phenylketonurias/*genetics/metabolism/pathology/physiopathology
;
Phenylpyruvic Acids/metabolism
;
Prealbumin/*biosynthesis/genetics
;
p38 Mitogen-Activated Protein Kinases/genetics/*metabolism

Result Analysis
Print
Save
E-mail