1.Hypertension exacerbates postoperative learning and memory impairment in rats possibly due to UCP2 downregulation-mediated mitochondrial dysfunction.
Luyu LIU ; Maowei GONG ; Guosong LIAO ; Weixing ZHAO ; Qiang FU
Journal of Southern Medical University 2025;45(4):725-735
OBJECTIVES:
To explore the correlation of hypertension with postoperative cognitive dysfunction and its possible mechanism.
METHODS:
Twelve-week-old spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats were both randomized into control group and surgical group (n=8). In the latter group, the rats received carotid artery exposure surgery under sevoflurane anesthesia to establish models of postoperative learning and memory impairment. Postoperative cognitive function changes of the rats were evaluated using behavioral tests. The hippocampus of the rats were collected for determining ATP level and mitochondrial membrane potential (MMP) and for detecting expressions of UCP2 and astrocyte markers (GFAP and NOX4) using Western blotting and immunofluorescence staining. Serum levels of ROS, IL-6, IL-1β and TNF‑α were detected using ELISA. Nissl staining was used to examine hippocampal neuronal loss in the CA1 region.
RESULTS:
The SHRs exhibited exacerbated learning and memory deficits following the surgery as shown by significantly reduced performance in novel object recognition tests and context-related and tone-related fear conditioning experiments. Compared with WKY rats, the SHRs had significantly decreased mitochondrial UCP2 expression and MMP in the hippocampus, increased hippocampal ATP level, and markedly increased serum levels of ROS and inflammatory factors, showing also increased activation of hippocampal astrocytes and microglia and reduced number of neurons positive for Nissl staining.
CONCLUSIONS
Hypertension can exacerbate major postoperative learning and memory impairment in rats possibly as a result of UCP2-mediated mitochondrial dysfunction and oxidative stress damage, which further leads to astrocyte overactivation and neuronal damage.
Animals
;
Rats, Inbred SHR
;
Rats
;
Uncoupling Protein 2
;
Rats, Inbred WKY
;
Hypertension/physiopathology*
;
Hippocampus/metabolism*
;
Mitochondria/metabolism*
;
Down-Regulation
;
Male
;
Memory Disorders/etiology*
;
Mitochondrial Proteins/metabolism*
2.Correlation between uncoupling protein 2 expression and myocardial mitochondrial injury in rats with sepsis induced by lipopolysaccharide.
Jin-Da HUANG ; Sheng-Li CHEN ; Juan-Juan LYU ; Cui LIU ; Qi-Yi ZENG
Chinese Journal of Contemporary Pediatrics 2016;18(2):159-164
OBJECTIVETo investigate the correlation between uncoupling protein 2 (UCP2) expression and myocardial mitochondria injury in rats with sepsis induced by lipopolysaccharide (LPS).
METHODSThe rat model of sepsis was established through an intraperitoneal injection of LPS. Forty male Sprague-Dawley rats were randomly and equally divided into control group (an intraperitoneal injection of normal saline), sepsis 6 h group (LPS-6 h group), sepsis 12 h group (LPS-12 h group), sepsis 24 h group (LPS-24 h group), and sepsis 48 h group (LPS-48 h group). The serum and heart tissues were harvested at corresponding time points and myocardial mitochondria was extracted. The microplate reader was applied to measure creatine kinase (CK), creatine kinase-MB (CK-MB), and reactive oxygen species (ROS). Flow cytometry was applied to measure the degree of mitochondrial swelling and mitochondrial membrane potential (MMP). Western blot was used to measure the expression level of UCP2. Electron microscopy was applied to observe the morphological changes in heart tissues and myocardial mitochondria.
RESULTSCompared with the control group, the LPS groups had significantly increased serum levels of CK, CK-MB, and myocardial ROS, as well as a significantly increased degree of mitochondrial swelling (P<0.05), and these values reached their peaks at 24 hours after LPS injection. The LPS groups had a significant decrease in MMP (P<0.05), which reached the lowest level at 24 hours after LPS injection. Western blot showed that the LPS groups had a significant increase in the expression level of myocardial UCP2 compared with the control group (P<0.05), which reached its peak at 24 hours after LPS injection. The results of electron microscopy showed mitochondrial swelling, partial rupture of the mitochondrial membrane, and cavity formation in rats in the LPS groups. The most severe lesions occurred in the LPS-24 h group. In rats with LPS, the ROS level in the myocardial mitochondria and the degree of mitochondrial swelling were positively correlated with the expression level of UCP2 (r=0.796 and 0.893, respectively; P<0.05), while MMP was negatively correlated with the expression level of UCP2 (r=-0.903, P<0.05).
CONCLUSIONSIn the rat model of sepsis, the myocardium and myocardial mitochondria have obvious injuries, and the expression level of UCP2 is closely correlated with mitochondrial injury. Therefore, UCP2 might play an important role in myocardial mitochondrial injury in sepsis.
Animals ; Cardiomyopathies ; genetics ; metabolism ; Disease Models, Animal ; Humans ; Ion Channels ; genetics ; metabolism ; Lipopolysaccharides ; adverse effects ; Male ; Mitochondria, Heart ; metabolism ; Mitochondrial Proteins ; genetics ; metabolism ; Myocardium ; metabolism ; Rats ; Rats, Sprague-Dawley ; Sepsis ; genetics ; metabolism ; Uncoupling Protein 2
3.Inhibitory effect of Genipin on uncoupling protein-2 and energy metabolism of androgen-independent prostate cancer cells.
Mao-liang YAO ; Jiang GU ; Yong-chun ZHANG ; Nan WANG ; Zhi-hui ZHU ; Qing-tao YANG ; Miao LIU ; Jian-feng XIA
National Journal of Andrology 2015;21(11):973-976
OBJECTIVETo explore whether the inhibitory effect of Genipin on uncoupling protein-2 (UCP-2) in mitochondria is involved in energy metabolism of androgen-independent PC3 prostate cancer cells.
METHODSPC3 prostate cancer cells were cultured and treated with Genipin at the concentrations of 40, 80, and 160 μmol/L for 48 hours. Then the proliferation of the cells was detected by MTT assay, the expression of UCP-2 mRNA determined by RT-PCR, and the content of intracellular pyruvic acid (PA) and the activity of succinate dehydrogenase (SDH) in the mitochondria measured by visible spectrophotometry.
RESULTSWith the increased concentration of Genipin, the proliferative activity of the PC-3 cells, the expression level of UCP-2 mRNA, the content of intracellular PA and the activity of SDH in the cells were all decreased, namely, with the enhanced inhibitory effect of Genipin on UCP-2, a trend of reduction was observed in the proliferation of the cells, intracellular PA content, and SDH activity in the mitochondria.
CONCLUSIONGenipin is involved in the energy metabolism of androgen-independent PC3 prostate cancer cells by reducing the content of intracellular PA and the activity of SDH in the mitochondria, which may be associated with its inhibitory effect on UCP-2.
Cell Line, Tumor ; drug effects ; Energy Metabolism ; Humans ; Ion Channels ; metabolism ; Iridoids ; pharmacology ; Male ; Mitochondria ; metabolism ; Mitochondrial Proteins ; metabolism ; Prostatic Neoplasms ; metabolism ; Pyruvic Acid ; metabolism ; RNA, Messenger ; Succinate Dehydrogenase ; metabolism ; Uncoupling Protein 2
4.Medium-Chain Triglyceride Activated Brown Adipose Tissue and Induced Reduction of Fat Mass in C57BL/6J Mice Fed High-fat Diet.
Yong ZHANG ; Qing XU ; Ying Hua LIU ; Xin Sheng ZHANG ; Jin WANG ; Xiao Ming YU ; Rong Xin ZHANG ; Chao XUE ; Xue Yan YANG ; Chang Yong XUE
Biomedical and Environmental Sciences 2015;28(2):97-104
OBJECTIVETo investigate activation of brown adipose tissue (BAT) stimulated by medium-chain triglyceride (MCT).
METHODS30 Male C57BL/6J obese mice induced by fed high fat diet (HFD) were divided into 2 groups, and fed another HFD with 2% MCT or long-chain triglyceride (LCT) respectively for 12 weeks. Body weight, blood biochemical variables, interscapular brown fat tissue (IBAT) mass, expressions of mRNA and protein of beta 3-adrenergic receptors (β3-AR), uncoupling protein-1 (UCP1), hormone sensitive lipase (HSL), protein kinase A (PKA), and adipose triglyceride lipase (ATGL) in IBAT were measured.
RESULTSSignificant decrease in body weight and body fat mass was observed in MCT group as compared with LCT group (P<0.05) after 12 weeks. Greater increases in IBAT mass was observed in MCT group than in LCT group (P<0.05). Blood TG, TC, LDL-C in MCT group were decreased significantly, meanwhile blood HDL-C, ratio of HDL-C/LDL-C and norepinephrine were increased markedly. Expressions of mRNA and protein of β3-AR, UCP1, PKA, HSL, ATGL in BAT were greater in MCT group than in LCT group (P<0.05).
CONCLUSIONOur results suggest that MCT stimulated the activation of BAT, possible via norepinephrine pathway, which might partially contribute to reduction of the body fat mass in obese mice fed high fat diet.
Adipose Tissue, Brown ; drug effects ; Adiposity ; drug effects ; Animals ; Dietary Fats ; administration & dosage ; pharmacology ; Ion Channels ; genetics ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondrial Proteins ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Triglycerides ; chemistry ; pharmacology ; Uncoupling Protein 1 ; Weight Loss
5.Expression patterns of sarcomeric α-actin, α-actinin and UCP2 in the myocardium of Kunming mice after exposure to c-terminal polypeptide of cardiotrophin-1.
Shu-fen CHEN ; Li-ya RAO ; Tao-zhi WEI ; Min-guang XU ; Zhan-ling DONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(6):796-800
Cardiotrophin-1 (CT-1) activates a distinct form of cardiac muscle cell hypertrophy in which the sarcomeric units are assembled in series. The aim of the study was to determine the expression pattern of sarcomeric contractile protein α-actin, specialized cytoskeletal protein α-actinin and mitochondrial uncoupling protein-2 (UCP2) in myocardial remodeling induced by chronic exposure to CT-1. Kunming mice were intraperitoneally injected with carboxy-terminal polypeptide (CP) of CT-1 (CT-1-CP, 500 μg·kg(-1)· day(-1)) for 1, 2, 3 and 4 week (s), respectively (4 groups obtained according to the injection time, n=10 each, with 5 males and 5 females in each group). Those injected with physiological saline for 4 weeks served as controls (n=10, with 5 males and 5 females). The heart tissues of mice were harvested at 1, 2, 3 or 4 week (s). Immunohistochemistry (IHC) and Western blotting (WB) were used to detect the distribution and expression of sarcomeric α-actin, α-actinin and mitochondrial UCP2 in myocardial tissues. IHC showed that α-actin was mainly distributed around the nuclei of cardiomyocytes, α-actinin concentrated around the striae and UCP2 scattered rather evenly in the plasma. The expression of α-actin was slightly greater than that of α-actinin and UCP2 in the control group (IHC: χ(2)=6.125; WB: F=0.249, P>0.05) and it gradually decreased after exposure to CT-1-CP. There was no significant difference in the expression of α-actin between the control group and the CT-1-CP-treated groups (χ (2)=7.386, P>0.05). But Western blotting revealed significant difference in the expression of α-actin between the control group and the 4-week CT-1-CP-treated group (F=2.912; q=4.203, P<0.05). Moreover, it was found that the expression of α-actinin increased stepwise with the exposure time in CT-1-CP-treated groups and differed significantly between CT-1-CP-treated groups and the control group (ICH: χ (2)=21.977; WB: F=50.388; P<0.01). The expression of UCP2 was initially increased (WB: control group vs. 1- or 2-week group, q values: 5.603 and 9.995, respectively, P<0.01) and then decreased (WB: control group vs. 3-week group, q=4.742, P<0.01; control group vs. 4-week group, q=0.558, P>0.05). It was suggested that long-term exposure to CT-1-CP could lead to the alteration in the expression of sarcomeric α-actin, α-actinin and mitochondrial UCP2. The different expressions of sarcomeric structure proteins and mitochondrial UCP2 may be involved in myocardial remodeling.
Actinin
;
biosynthesis
;
Actins
;
biosynthesis
;
Animals
;
Cardiomegaly
;
chemically induced
;
metabolism
;
pathology
;
Cytokines
;
adverse effects
;
pharmacology
;
Female
;
Gene Expression Regulation
;
drug effects
;
Ion Channels
;
biosynthesis
;
Male
;
Mice
;
Mitochondrial Proteins
;
biosynthesis
;
Myocardium
;
metabolism
;
pathology
;
Sarcomeres
;
metabolism
;
pathology
;
Uncoupling Protein 2
6.Effect of UCP2-siRNA on inflammatory response of cardiomyocytes induced by septic serum.
Zhi-Jiang CHEN ; Yuan-Bin SONG ; Hui-Li WANG ; Yang WANG ; Juan-Juan LV ; Di CHE ; Qi-Yi ZENG
Chinese Journal of Contemporary Pediatrics 2014;16(8):851-855
OBJECTIVETo study the effect of uncoupling protein 2 (UCP2)-siRNA on the inflammatory response of rat cardiomyocytes (H9C2) induced by septic serum and to investigate the possible role of UCP2 in the development of septic cardiomyopathy.
METHODSSerum samples were separately collected from normal rats and septic rats. Cultured rat cardiac cells (H9C2) were randomly divided into blank control, normal serum, 10% septic serum, UCP2-siRNA+10% septic serum and negative siRNA+10% septic serum groups. Stimulation with 10% septic serum was performed for 12 hours in relevant groups. The mRNA expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) was measured by RT-PCR. The expression of phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) and nuclear factor-kappa B (NF-κB) was measured by Western blot.
RESULTSThe expression levels of p-p38 and NF-κB in the UCP2-siRNA+10% septic serum group were significantly higher than in the 10% septic serum group (P<0.05). The UCP2-siRNA+10% septic serum group had a significantly higher TNF-α mRNA expression than the 10% septic serum group (P<0.01), but IL-1β mRNA expression showed no significant difference between the two groups.
CONCLUSIONSUCP2 plays a regulatory role in the activation of p38 MAPK and NF-κB and the expression of downstream inflammatory mediators in H9C2 cells stimulated with septic serum.
Animals ; Cardiomyopathies ; etiology ; Cells, Cultured ; Inflammation ; etiology ; Interleukin-1beta ; genetics ; Ion Channels ; genetics ; physiology ; Male ; Mitochondrial Proteins ; genetics ; physiology ; Myocytes, Cardiac ; metabolism ; NF-kappa B ; metabolism ; RNA, Small Interfering ; genetics ; Rats ; Rats, Sprague-Dawley ; Sepsis ; blood ; complications ; Tumor Necrosis Factor-alpha ; genetics ; Uncoupling Protein 2 ; p38 Mitogen-Activated Protein Kinases ; metabolism
7.Effect of bone morphogenetic protein 7 on differentiation of adipose derived mesenchymal stem cells into brown adipocytes in rats.
Long ZHENG ; Jian-Min LIU ; Jun-Xia WANG ; Min-Zhi LI ; Wei-Guang LIAN ; Peng XIE ; Shu-Feng LIU
Acta Academiae Medicinae Sinicae 2014;36(6):654-659
OBJECTIVETo evaluate the effect of bone morphogenetic protein(BMP7)on the differentiation of adipose derived mesenchymal stem cells(AD-MSCs)isolated from different adipose tissues into brown adipocytes in rats.
METHODSPrimary AD-MSCs were isolated from rate interscapular brown adipose tissue(iBAT),inguinal subcutaneous white adipose tissue(sWAT),and epididymal white adipose tissue(eWAT),respectively,and then cultivated in vitro. Differentiation of AD-MSCs into brown adipocytes was induced by BMP7. The characteristics of brown adipocytes were detected by immunofluorescence staining and oil red staining of cells. The expression levels of brown adipocyte-related genes were detected by polymerase chain reaction.
RESULTSAD-MSCs from iBAT and sWAT were differentiated into cluster multilocular cells,which were stained red by oil red "O"staining and showed uncoupling protein 1-positive by immunofluorescent staining method. AD-MSCs from eWAT had a small number of scattered multilocular cells and showed uncoupling protein 1-negative. The results of reverse transcription-polymerase chain reaction showed that the uncoupling protein 1 gene was highly expressed in the iBAT group and sWAT group but was negative in the eWAT group.
CONCLUSIONAD-MSCs isolated from different adipose tissues in rats have different gene expression profiles and differentiation potentials.
Adipocytes, Brown ; physiology ; Adipose Tissue ; metabolism ; Adipose Tissue, Brown ; physiology ; Animals ; Bone Morphogenetic Protein 7 ; metabolism ; Cell Differentiation ; physiology ; Ion Channels ; metabolism ; Mesenchymal Stromal Cells ; physiology ; Mitochondrial Proteins ; metabolism ; Obesity ; metabolism ; Rats ; Uncoupling Protein 1
8.Effects of beta3-adrenergic receptor antagonist on myocardial UCP2 expression and energy metabolism in chronic heart failure rats.
Yan-Hui GAO ; Hai-Bo GAO ; Ning-Ning DI ; Yi-Hui KONG ; Wei-Min LI
Chinese Journal of Applied Physiology 2013;29(4):376-384
OBJECTIVETo observe the effects of beta3-adrenergic receptor(beta3-AR) antagonist on myocardial uncoupling protein 2 (UCP2) expression and energy metabolism in chronic heart failure rats.
METHODSSeven weight-matched normal adult rats (control group), 18 isoproterenol (ISO) induced heat failure (HR) rats (ISO group) and 21 ISO induced heart failure rats but received specific beta3-AR inhibitor SR59230A (ISO+ SR59230A group) for 6 weeks were included in this research. At the end of the study, echocardiography was performed, the ratio of left ventricular weight and body weight (LVW/BW) was calculated. The expression of beta3-AR ad UCP2 mRNA in myocardium were detected by reverse transcription-polymerase chain reaction (RT-PCR), the UCP2 protein in myocardium were detected by Western blot. The myocardial contents of creatine phosphate (PCr) and adenosine triphosphate (ATP) were measured by high performance liquid chromatography (HPLC).
RESULTSCompared with control group, the cardiac function was significantly reduced and myocardial beta3-AR mRNA significantly increased, UCP2 mRNA and protein were also significantly increased in ISO group, this change could be attenuated by the treatment with SR59230A, and the expression of myocardial UCP2 protein negatively correlated with the ratio of PCr/ATP.
CONCLUSIONIn the chronic stage of HF, the expression of UCP2 increases, which causes myocardial energy shortage, SR59230A improves myocardia energy efficiency and cardiac function by means of suppressing the expression of UCP2.
Adrenergic Antagonists ; pharmacology ; Animals ; Energy Metabolism ; Heart Failure ; metabolism ; Ion Channels ; metabolism ; Male ; Mitochondrial Proteins ; metabolism ; Myocardium ; metabolism ; Rats ; Rats, Wistar ; Receptors, Adrenergic, beta-3 ; metabolism ; Uncoupling Protein 2
9.Effects of repeated fasting/refeeding on lipid metabolism and uncoupling proteins expression in rats.
Bo WU ; Yan-Hong FENG ; Chong-Bin LIU ; Hui-Ling ZHAO ; Yi-Long WANG ; Xi-Wenla CHEN
Chinese Journal of Applied Physiology 2013;29(4):363-367
OBJECTIVETo explore the expression changes of mRNA and protein of uncoupling protein 2 (UCP2) in adipose tissues and uncoupling protein 3 (UCP3) in muscle tissues of rats which were treated with repeated fasting/refeeding and followed by fed with high-fat diet, and their possible mechanism on lipid metabolism.
METHODSThe model of repeating fasting/refeeding rats (repeated cycles of 1-day fasting and 1-day refeeding for 6 weeks fed with common-fat diet, RFR) was designed. At the end of the 6th week, the RFR rats were switched to high-fat diet every day (RFR-CF/HF). Moreover, the control rats were randomly divided into two groups and then fed with high-fat diet (HF) and common-fat diet (CF) respectively for 6 weeks. All rats were killed at the end of the 6th and the 12th week, serum and plasma samples were taken from abdominal aorta, and then the concentration of serum lipids, glucose, free fatty acid (FFA), and plasma insulin were measured. The histomorphological changes of liver tissues were observed by HE staining. The expression level of mRNA and protein of UCP2 in adipose tissues and UCP3 in muscle tissues was respectively measured by RT-PCR and Western blot.
RESULTS(1) The concentration of serum glucose in RFR group was significantly lower than that in control group (P < 0.05), while the concentration of serum FFA, expression level of UCP2 mRNA, UCP3 mRNA and protein were significantly higher than those in control group (P < 0.05). (2) The concentration of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and plasma insulin in RFR-CF/HF group was significantly lower than that in HF group, but significantly higher than that in CF group (P < 0.05). The concentration of serum FFA was significantly lower than that of HF and CF groups (P < 0.01). The expression level in UCP2, UCP3 mRNA and protein was significantly higher than that of HF group, but significantly lower than that of CF group (P < 0.05).
CONCLUSIONThe feeding pattern of repeated fasting/refeeding can decrease the obese degree induced by high-fat diet, increase the mRNA and protein expression of UCP2 in adipose tissues and UCP3 in muscle tissues, up-regulate the proton leak caused by obesity, and improve the rate of basic energy metabolism in rats.
Adipose Tissue ; metabolism ; Animals ; Fasting ; metabolism ; Feeding Methods ; Ion Channels ; metabolism ; Lipid Metabolism ; Male ; Mitochondrial Proteins ; metabolism ; Muscles ; metabolism ; Obesity ; metabolism ; Rats ; Rats, Sprague-Dawley ; Uncoupling Protein 2 ; Uncoupling Protein 3
10.Uncoupling protein and nonalcoholic fatty liver disease.
Xi JIN ; Zun XIANG ; Yi-peng CHEN ; Kui-fen MA ; Yue-fang YE ; You-ming LI
Chinese Medical Journal 2013;126(16):3151-3155
OBJECTIVETo review the current advances on the role of uncoupling protein (UCP) in the pathogenesis and progress of nonalcoholic fatty liver disease (NAFLD).
DATA SOURCESA comprehensive search of the PubMed literature without restriction on the publication date was carried out using keywords such as UCP and NAFLD.
STUDY SELECTIONArticles containing information related to NAFLD and UCP were selected and carefully analyzed.
RESULTSThe typical concepts, up-to-date findings, and existing controversies of UCP2 in NAFLD were summarized. Besides, the effect of a novel subtype of UCP (hepatocellular down regulated mitochondrial carrier protein, HDMCP) in NAFLD was also analyzed. Finally, the concept that any mitochondrial inner membrane carrier protein may have, more or less, the uncoupling ability was reinforced.
CONCLUSIONSConsidering the importance of NAFLD in clinics and UCP in energy metabolism, we believe that this review may raise research enthusiasm on the effect of UCP in NAFLD and provide a novel mechanism and therapeutic target for NAFLD.
Animals ; Fatty Acids, Nonesterified ; metabolism ; Fatty Liver ; etiology ; metabolism ; Humans ; Ion Channels ; physiology ; Mitochondrial Proteins ; analysis ; chemistry ; physiology ; Non-alcoholic Fatty Liver Disease ; Uncoupling Protein 2

Result Analysis
Print
Save
E-mail