1.Effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on myocardial circPAN3, FOXO3, BNIP3 levels and myocardial fibrosis in rats with chronic heart failure.
Lan LI ; Bing GAO ; Jing HU ; Pan LIU ; Liya LI ; Ruihua LI ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1600-1608
OBJECTIVE:
To observe the effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on the circular RNA of exon 2-5 of the Pan3 gene (circPAN3), forkhead box O3 (FOXO3), and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in rats with chronic heart failure (CHF), and explore the potential mechanisms of moxibustion in alleviating myocardial fibrosis.
METHODS:
Ten rats of 60 male SPF-grade SD rats were randomly assigned into a normal group. The remaining rats underwent left anterior descending coronary artery (LAD) ligation to establish the CHF model. Forty successfully modeled rats were randomly divided into a model group, a moxibustion group, a rapamycin (RAPA) group, and a moxibustion+RAPA group, with 10 rats in each group. The moxibustion group received mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15), 30 min per session. The RAPA group received intraperitoneal injection of the autophagy activator RAPA (1 mg/kg). The moxibustion+RAPA group first received RAPA injection, followed by mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15). All interventions were administered once daily for 4 consecutive weeks. After the intervention, cardiac ultrasound was used to measure ejection fraction (EF) and left ventricular fractional shortening (FS). Serum placental growth factor (PLGF) level was determined by ELISA. Myocardial tissue morphology and collagen volume were assessed using hematoxylin-eosin (HE) staining and Masson's trichrome staining. The expression levels of circPAN3, FOXO3, and BNIP3 mRNA in myocardial tissue were detected by real-time PCR, while FOXO3 and BNIP3 protein expression levels were analyzed by Western blot.
RESULTS:
Compared with the normal group, the model group exhibited myocardial cell disorder, severe fibrosis, and increased collagen volume (P<0.01), along with significantly decreased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and the serum PLGF level, as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue were increased (P<0.01). Compared with the model group, the moxibustion group showed reduced myocardial fibrosis, decreased collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01). Compared with the model group, the RAPA group showed further deterioration in these parameters (P<0.01). Compared with the RAPA group, the moxibustion+RAPA group exhibited alleviation of myocardial fibrosis, reduced collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01).
CONCLUSION
Moxibustion could alleviate myocardial fibrosis in CHF rats, possibly through upregulation of myocardial circPAN3 expression, downregulation of FOXO3 and BNIP3 expression, and inhibition of excessive myocardial autophagy.
Animals
;
Moxibustion
;
Heart Failure/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Myocardium/pathology*
;
RNA, Circular/metabolism*
;
Membrane Proteins/metabolism*
;
Forkhead Box Protein O3/metabolism*
;
Acupuncture Points
;
Humans
;
Fibrosis/genetics*
;
Chronic Disease/therapy*
;
Mitochondrial Proteins
2.Impact of tyrosine phosphorylation site mutation in FUNDC1 protein on mitophagy in H9c2 cardiomyocytes.
Zhaoyang ZHANG ; Yanli YU ; Jieyun WU ; Wei TIAN ; Jingman XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):629-636
Objective To investigate the effect of FUNDC1 tyrosine phosphorylation site mutations on mitophagy in H9c2 myocardial cells by constructing tyrosine site mutant plasmids (Y11 and Y18) of the FUN14 domain-containing protein 1 (FUNDC1). Methods The mutant plasmids constructed by whole-gene synthesis were transfected into rat myocardial H9c2 cells and divided into five groups: empty plasmid group, FUNDC1 overexpression group, Y11 mutant group, Y18 mutant group, and Y11 combined with Y18 mutant group. The viability of H9c2 cells was assessed using the CCK-8 assay. Additionally, tetramethylrhodamine ethyl ester (TMRE) staining was utilized to detect mitochondrial membrane potential. The protein expression levels of FUNDC1, translocase of the outer mitochondrial membrane 20 (TOM20), and cytochrome c oxidase IV (COX IV) were detected by Western blot analysis. Confocal microscopy was used to evaluate transfection efficiency as well as the co-localization of mitochondria and lysosomes. Results The FUNDC1 overexpression, Y11, Y18, and Y11 combined with Y18 mutant plasmids were successfully constructed. After plasmid transfection, widespread GFP fluorescence expression was observed under confocal microscopy. Compared with the empty plasmid group, FUNDC1 protein expression levels were significantly increased in the FUNDC1 overexpression group, Y11 mutation group, Y18 mutation group, and Y11 combined with Y18 mutation group, while cell viability and mitochondrial membrane potential showed no significant changes. Compared to the empty plasmid group, cells transfected with Y18 and Y11 combined with Y18 mutant plasmids showed increased TOM20 and COX IV expression levels and decreased mitochondrial-lysosomal co-localization. Conclusion Transfection with FUNDC1 Y18 or Y11 combined with Y18 mutant plasmids inhibited mitophagy in H9c2 myocardial cells.
Animals
;
Rats
;
Mitophagy/genetics*
;
Myocytes, Cardiac/cytology*
;
Mitochondrial Proteins/metabolism*
;
Mutation
;
Phosphorylation
;
Tyrosine/genetics*
;
Cell Line
;
Membrane Proteins/metabolism*
;
Membrane Potential, Mitochondrial
3.Inhibition of miR-30d-5p promotes mitochondrial autophagy and alleviates high glucose-induced injury in podocytes.
Ying CAI ; Sheng CHEN ; Xiaoli JIANG ; Qiyuan WU ; Bei GUO ; Fang WANG
Journal of Zhejiang University. Medical sciences 2024;53(6):756-764
OBJECTIVES:
To study the role of microRNA (miR)-30d-5p in high glucose-induced podocyte injury.
METHODS:
Podocytes were hyperglycated with 30 mmol/L glucose, transfected with miR-30d-5p inhibitor and mimic, and then treated with 1 mg/mL 3-methyladenine (3-MA). The transfection efficiency of miR-30d-5p was quantified by reverse transcription PCR. Apoptosis was detected by flow cytometry. The expressions of nephrin, microtubule-associated protein light chain (LC) 3Ⅱ/LC3Ⅰ, P62, autophagy-related gene (ATG) 5, PTEN induced putative kinase (PINK) 1 and Parkin gene (PARK2) were detected by Western blotting. The mito-chondrial membrane potential was detected by JC-1 fluorescent probe, and adenosine triphosphate (ATP) content in cells was detected by relevant kits.
RESULTS:
Under high glucose induction, podocyte apoptosis increased, miR-30d-5p and P62 expressions were upregulated, while nephrin, ATG5, PINK1, PARK2 and LC3Ⅱ/LC3Ⅰ expressions decreased (all P<0.01). MiR-30d-5p inhibitor reversed the effect of high glucose on apoptosis, and the expression of ATG5, PINK1, PARK2, nephrin, LC3Ⅱ/LC3Ⅰ and P62 (all P<0.01). High glucose induced loss of mitochondrial membrane potential and ATP content in podocytes, while inhibition of miR-30d-5p increased them. Autophagy inhibitors 3-MA and miR-30d-5p mimics reversed the effects of miR-30d-5p inhibition on apoptosis, autophagy and mitochondrial function of podocytes induced by high glucose (all P<0.05).
CONCLUSIONS
Inhibition of miR-30d-5p may promote mitochondrial autophagy (mitophagy) by promoting the expression of ATG5, PINK1, PARK2 and alleviating high glucose-induced podocyte damage.
Podocytes/drug effects*
;
MicroRNAs/metabolism*
;
Glucose/adverse effects*
;
Autophagy/drug effects*
;
Animals
;
Mice
;
Autophagy-Related Protein 5/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Membrane Proteins/genetics*
;
Membrane Potential, Mitochondrial/drug effects*
;
Microtubule-Associated Proteins/genetics*
;
Protein Kinases
4.Mechanism of Buyang Huanwu Decoction in protecting ischemic myocardium by regulating platelet autophagy in rats with acute myocardial infarction.
Jia-Ming GAO ; Hao GUO ; Ye-Hao ZHANG ; Ling-Mei LI ; Gao-Jie XIN ; Zi-Xin LIU ; Yue YOU ; Yuan-Yuan CHEN ; Jian-Xun LIU ; Jian-Hua FU
China Journal of Chinese Materia Medica 2023;48(15):4156-4163
This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/therapeutic use*
;
Myocardial Infarction/genetics*
;
Myocardium/metabolism*
;
Aspirin/therapeutic use*
;
TOR Serine-Threonine Kinases/metabolism*
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins
5.Mitophagy mediated by ligustilide relieves OGD/R-induced injury in HT22 cells.
Qian WU ; Jiao LIU ; Li-Yu TIAN ; Ning WANG
China Journal of Chinese Materia Medica 2022;47(7):1897-1903
Mitochondrion, as the main energy-supply organelle, is the key target region that determines neuronal survival and death during ischemia. When an ischemic stroke occurs, timely removal of damaged mitochondria is very important for improving mitochondrial function and repairing nerve damage. This study investigated the effect of ligustilide(LIG), an active ingredient of Chinese medicine, on mitochondrial function and mitophagy based on the oxygen and glucose deprivation/reperfusion(OGD/R)-induced injury model in HT22 cells. By OGD/R-induced injury model was induced in vitro, HT22 cells were pre-treated with LIG for 3 h, and the cell viability was detected by the CCK-8 assay. Immunofluorescence and flow cytometry were used to detect indicators related to mitochondrial function, such as mitochondrial membrane potential, calcium overload, and reactive oxygen species(ROS). Western blot was used to detect the expression of dynamin-related protein 1(Drp1, mitochondrial fission protein) and cleaved caspase-3(apoptotic protein). Immunofluorescence was used to observe the co-localization of the translocase of outer mitochondrial membrane 20(TOMM20, mitochondrial marker) and lysosome-associated membrane protein 2(LAMP2, autophagy marker). The results showed that LIG increased the cell viability of HT22 cells as compared with the conditions in the model group. Furthermore, LIG also inhibited the ROS release, calcium overload, and the decrease in mitochondrial membrane potential in HT22 cells after OGD/R-induced injury, facilitated Drp1 expression, and promoted the co-localization of TOMM20 and LAMP2. The findings indicate that LIG can improve the mitochondrial function after OGD/R-induced injury and promote mitophagy. When mitophagy inhibitor mdivi-1 was administered, the expression of apoptotic protein increased, suggesting that the neuroprotective effect of LIG may be related to the promotion of mitophagy.
4-Butyrolactone/analogs & derivatives*
;
Apoptosis
;
Calcium/pharmacology*
;
Glucose/metabolism*
;
Humans
;
Mitochondrial Proteins
;
Mitophagy
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/genetics*
6.Genetic testing and prenatal diagnosis for a Chinese pedigree affected with mitochondrial DNA depletion syndrome due to variant of MPV17 gene.
Ganye ZHAO ; Xiaoyan ZHAO ; Xuechao ZHAO ; Li'na LIU ; Conghui WANG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2022;39(10):1085-1088
OBJECTIVE:
To explore the genetic etiology of a Chinese pedigree affected with infantile hepatitis syndrome.
METHODS:
Genes associated with liver diseases subjected to high-throughput sequencing. Candidate variants were validated by Sanger sequencing of the proband and his parents. The pathogenicity of the variants was analyzed through bioinformatic analysis.
RESULTS:
High-throughput sequencing revealed that the proband has harbored c.182T>C (p.F61S) and c.293C>T (p.P98L) variants of the MPV17 gene, which were verified by Sanger sequencing to be inherited from his parents. The variant c.182T>C (p.F61S) was unreported previously and predicted to be likely pathogenic by bioinformatic analysis.
CONCLUSION
The proband was caused by the compound heterozygous variations of MPV17 gene including c.182T>C (p.F61S) and c.293C>T (p.P98L). Discovery of the novel variant has enriched the spectrum of pathogenic variants of the MPV17 gene.
China
;
DNA, Mitochondrial/genetics*
;
Female
;
Genetic Testing
;
Humans
;
Membrane Proteins/genetics*
;
Metabolism, Inborn Errors/genetics*
;
Mitochondrial Proteins/genetics*
;
Mutation
;
Pedigree
;
Pregnancy
;
Prenatal Diagnosis
;
Syndrome
7.Long non-coding RNA LINC01133 regulates cementogenic differentiation of human periodontal ligament stem cells by modulating mitochondrial functions.
Dao Kun DENG ; Xuan LI ; Xiao Tao HE ; Hai Hua SUN ; Bei Min TIAN ; Fa Ming CHEN
Chinese Journal of Stomatology 2022;57(12):1209-1216
Objective: To investigate the effects of long non-coding RNA (lncRNA) LINC01133 on the cementogenic differentiation of human periodontal ligament stem cells (hPDLSC) and the underlying mechanism. Methods: A total of 12 teeth were harvested from 10 patients aged 17-30 years in the Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University for impacted or orthodontic reasons from September 2021 to January 2022. The hPDLSCs were isolated from the teeth and transfected with small interfering RNA-LINC01133 (si-LINC01133) or small interfering RNA-negative control (si-NC). The si-LINC01133 was regarded as the experimental group, and the si-NC was regarded as the control one. The silencing efficiency of LINC01133 in the hPDLSCs was evaluated by real-time quantitative PCR (RT-qPCR). Western blotting was used to detect the protein expression levels of cementogenic differentiation-related factors including bone sialoprotein (BSP), cementum attachment protein (CAP), and cementum protein-1 (CEMP-1). Mitochondrial reactive oxygen species (mtROS) production was assessed using the MitoSox by flow cytometry. Mitochondrial membrane potential (MMP) was detected by JC-1 fluorescence staining. Mitochondrial respiratory chain complexes proteins including NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8 (NDUFB8), succinate dehydrogenase complex flavoprotein subunit A (SDHA), ubiquinol-cytochrome c reductase core protein 1 (UQCR1), cytochrome c oxidase subunit 4 isoform 1 (COXⅣ), and ATP synthase F1 subunit alpha (ATP5A) were evaluated by Western blotting. Results: The expression levels of LINC01133 could be suppressed by more than 60% with si-LINC01133 (control group: 1.000±0.000, experimental group: 0.385±0.128) (t=10.72, P<0.01). Suppression of LINC01133 in hPDLSCs decreased the levels of cementogenic differentiation-related proteins including BSP (control group: 1.000±0.000, experimental group: 0.664±0.179) (t=4.62, P<0.01) and CAP (control group: 1.000±0.000, experimental group: 0.736±0.229) (t=2.83, P<0.05). Suppression of LINC01133 in hPDLSCs increased the production of mtROS (control group: 1.000±0.000, experimental group: 1.458±0.185) (t=4.96, P<0.05) and the expression of NDUFB8 (control group: 1.000±0.000, experimental group: 1.683±0.397) (t=3.45, P<0.05), as well as decreased MMP levels (control group: 1.000±0.000, experimental group: 0.209±0.029) (t=53.99, P<0.01) and the expression of SDHA (control group: 1.000±0.000, experimental group: 0.428±0.228) (t=5.02, P<0.05). No significant changes in the UQCR1, COXⅣ, and ATP5A expression levels were found between the control group and exprimental group (P>0.05). Conclusions: LINC01133 regulates the cementogenic differentiation of hPDLSCs possibly via modulating the mitochondrial functions.
Humans
;
Periodontal Ligament
;
RNA, Long Noncoding/metabolism*
;
Cells, Cultured
;
Stem Cells
;
Cell Differentiation
;
Integrin-Binding Sialoprotein/metabolism*
;
Mitochondrial Proteins/metabolism*
;
Mitochondria/genetics*
;
RNA, Small Interfering/metabolism*
;
Osteogenesis
8.Analysis of
Yaping SHEN ; Kai YAN ; Minyue DONG ; Rulai YANG ; Xinwen HUANG
Journal of Zhejiang University. Medical sciences 2020;49(5):574-580
9.The effects of Sestrin2 on apoptosis of heat-exposed lung epithelial cells and its mechanism.
Xiu-Jie GAO ; Shang WANG ; Wei-Li LIU ; Kun WANG ; Zhao-Li CHEN ; Xin-Xing WANG
Chinese Journal of Applied Physiology 2019;35(4):289-292
OBJECTIVE:
To investigate the protective effects of Sestrin2 protein on lung epithelial Beas-2B cells in the heat-exposure environment and its mechanism.
METHODS:
Lung epithelial Beas-2B cells were cultured at 37℃, 39℃, 40℃ and 41℃ respectively. Cells were harvested at different times (0, 3, 6 and 12 h) after pancreatin digestion. The expressions of Sestrin2, superoxide dismutase(SOD), reactive oxygen species(ROS), cell mitochondrial membrane potential and apoptosis rate of cells were detected by Western blot, fluorescence spectrophotometer and flow cytometry, respectively. Gene expression sequence was cloned into high expression plasmid pcDNA3.1. Beas-2B cells were transfected by Lipfectamine 2000 to construct Sestrin2 and SOD high expression cells. The changes of mitochondrial membrane potential and cell apoptosis were observed in the Sestrin2 and SOD high expression cells.
RESULTS:
With the increase of temperature, the expression level of Sestrin2 protein in heat treatment group was decreased compared with the control group. When Beas-2B cells were exposed to 41℃, the ROS level was increased, mitochondrial membrane potential was decreased significantly and apoptosis rate was increased at different time points. After high expression of Sestrin2 and SOD in the Beas-2B cells, the expression level of ROS was decreased and the change tendency of mitochondrial membrane potential was decreased, and the apoptosis rate was reduced at 41℃ exposure.
CONCLUSION
Sestrin2 can alleviate the apoptosis of lung epithelial cells induced by heat exposure through mitochondrial membrane potential and SOD, which has protective effect on lung epithelial Beas-2B cells.
Apoptosis
;
Cell Line
;
Epithelial Cells
;
pathology
;
Hot Temperature
;
Humans
;
Membrane Potential, Mitochondrial
;
Nuclear Proteins
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Transfection
10.The Association between the C5263T Mutation in the Mitochondrial ND2 Gene and Coronary Heart Disease among Young Chinese Han People.
Guo Xin HAN ; Lei XIA ; Shuo Shuo LI ; Qin Hua JIN ; Yang SONG ; Hong SHEN ; Li Li WANG ; Ling Jie KONG ; Tan Shi LI ; Hai Yan ZHU
Biomedical and Environmental Sciences 2017;30(4):280-287
OBJECTIVEThis study aimed to investigate the genetic background of mitochondrial genes in young patients with Coronary heart disease (CHD) to provide a foundation for the early prevention of young patients with CHD.
METHODS115 cases of young (⋜ 45 years) CHD Chinese Han patients (case group), 100 cases of older (> 45 years) Chinese Han CHD patients (experimental group) hospitalized and 100 cases of healthy people through physical examination (control group) at the General Hospital of PLA between January 2014 and December 2015 were selected. General information, clinical assessment, pedigree analysis, and mitochondrial full sequence scanning were performed. The pedigrees of one patient harbouring the C5263T mutation were recruited. Mitochondrial functional analysis including cellular reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were performed on pedigrees with the C5263T mutation (mutation group) and without the mutation (non-mutation group).
RESULTSThe differences in biochemical tests (P > 0.05) between the case group and experimental group were not significant. The C5263T single-nucleotide mutation of the mitochondrial ND2 gene was observed in 2 young CHD patients in the case group. The premature CHD of these 2 patients followed a pattern of maternal inheritance. The mutation group (I1, II2) had higher ROS levels (4750.82 ± 1045.55 vs. 3888.58 ± 487.60, P = 0.022) and lower MMP levels (P = 0.045) than the non-mutation group (II1, III1, III2).
CONCLUSIONWe speculated that the mitochondrial C5263T mutation might be associated with the occurrence CHD in Chinese Han young people.
Adult ; Aged ; Aged, 80 and over ; Base Sequence ; China ; epidemiology ; Coronary Disease ; epidemiology ; genetics ; Female ; Genes, Mitochondrial ; Humans ; Male ; Middle Aged ; Mitochondrial Proteins ; genetics ; metabolism ; Mutation ; NADH Dehydrogenase ; genetics ; metabolism

Result Analysis
Print
Save
E-mail