1.Study on the mechanism of Wuzi-Yanzong-Wan-medicated serum interfering with the mitochondrial permeability transition pore in the GC-2 cell induced by atractyloside.
De-Ling WU ; Tong-Sheng WANG ; Hong-Juan LIU ; Wei ZHANG ; Xiao-Hui TONG ; Dai-Yin PENG ; Ling-Yi KONG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):282-289
Wuzi-Yanzong-Wan (WZYZW) is a classic prescription for male infertility. Our previous investigation has demonstrated that it can inhibit sperm apoptosis via affecting mitochondria, but the underlying mechanisms are unclear. The purpose of the present study was to explore the actions of WZYZW on mitochondrial permeability transition pore (mPTP) in mouse spermatocyte cell line (GC-2 cells) opened by atractyloside (ATR). At first, WZYZW-medicated serum was prepared from rats following oral administration of WZYZW for 7 days. GC-2 cells were divided into control group, model group, positive group, as well as 5%, 10%, 15% WZYZW-medicated serum group. Cyclosporine A (CsA) was used as a positive control. 50 μmol·L-1 ATR was added after drugs incubation. Cell viability was assessed using CCK-8. Apoptosis was detected using flow cytometry and TUNEL method. The opening of mPTP and mitochondrial membrane potential (MMP) were detected by Calcein AM and JC-1 fluorescent probe respectively. The mRNA and protein levels of voltage-dependent anion channel 1 (VDAC1), cyclophilin D (CypD), adenine nucleotide translocator (ANT), cytochrome C (Cyt C), caspase 3, 9 were detected by RT-PCR (real time quantity PCR) and Western blotting respectively. The results demonstrated that mPTP of GC-2 cells was opened after 24 hours of ATR treatment, resulting in decreased MMP and increased apoptosis. Pre-protection with WZYZ-medicated serum and CsA inhibited the opening of mPTP of GC-2 cells induced by ATR associated with increased MMP and decreased apoptosis. Moreover, the results of RT-qPCR and WB suggested that WZYZW-medicated serum could significantly reduce the mRNA and protein levels of VDAC1 and CypD, Caspase-3, 9 and CytC, as well as a increased ratio of Bcl/Bax. However, ANT was not significantly affected. Therefore, these findings indicated that WZYZW inhibited mitochondrial mediated apoptosis by attenuating the opening of mPTP in GC-2 cells. WZYZW-medicated serum inhibited the expressions of VDAC1 and CypD and increased the expression of Bcl-2, which affected the opening of mPTP and exerted protective and anti-apoptotic effects on GC-2 cell induced by ATR.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
Animals
;
Atractyloside/pharmacology*
;
Cyclophilin D
;
Male
;
Matrix Metalloproteinases
;
Mice
;
Mitochondrial Membrane Transport Proteins/metabolism*
;
Mitochondrial Permeability Transition Pore
;
RNA, Messenger
;
Rats
2.Salvianolic Acid A Protects Neonatal Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Injury by Preserving Mitochondrial Function and Activating Akt/GSK-3β Signals.
Xue-Li LI ; Ji-Ping FAN ; Jian-Xun LIU ; Li-Na LIANG
Chinese journal of integrative medicine 2019;25(1):23-30
OBJECTIVE:
To investigate the effects of salvianolic acid A (SAA) on cardiomyocyte apoptosis and mitochondrial dysfunction in response to hypoxia/reoxygenation (H/R) injury and to determine whether the Akt signaling pathway might play a role.
METHODS:
An in vitro model of H/R injury was used to study outcomes on primary cultured neonatal rat cardiomyocytes. The cardiomyocytes were treated with 12.5, 25, 50 μg/mL SAA at the beginning of hypoxia and reoxygenation, respectively. Adenosine triphospate (ATP) and reactive oxygen species (ROS) levels were assayed. Cell apoptosis was evaluated by flow cytometry and the expression of cleaved-caspase 3, Bax and Bcl-2 were detected by Western blotting. The effects of SAA on mitochondrial dysfunction were examined by determining the mitochondrial membrane potential (△Ψm) and mitochondrial permeability transition pore (mPTP), followed by the phosphorylation of Akt (p-Akt) and GSK-3β (p-GSK-3β), which were measured by Western blotting.
RESULTS:
SAA significantly preserved ATP levels and reduced ROS production. Importantly, SAA markedly reduced the number of apoptotic cells and decreased cleaved-caspase 3 expression levels, while also reducing the ratio of Bax/Bcl-2. Furthermore, SAA prevented the loss of △Ψm and inhibited the activation of mPTP. Western blotting experiments further revealed that SAA significantly increased the expression of p-Akt and p-GSK-3β, and the increase in p-GSK-3β expression was attenuated after inhibition of the Akt signaling pathway with LY294002.
CONCLUSION
SAA has a protective effect on cardiomyocyte H/R injury; the underlying mechanism may be related to the preservation of mitochondrial function and the activation of the Akt/GSK-3β signaling pathway.
Adenosine Triphosphate
;
analysis
;
Animals
;
Animals, Newborn
;
Caffeic Acids
;
pharmacology
;
Cell Hypoxia
;
Cells, Cultured
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Lactates
;
pharmacology
;
Mitochondria, Heart
;
drug effects
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
drug effects
;
Myocytes, Cardiac
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
;
physiology
3.Dual role of polyamines in heart ischemia/reperfusion injury through regulation of mitochondrial permeability transition pore.
Hui-Ying CHEN ; Xiao-Li JIA ; Shu-Qin ZHAO ; Wei-Hong ZHENG ; Zhi-Gang MEI ; Hong-Wei YANG ; Shi-Zhong ZHANG
Acta Physiologica Sinica 2019;71(5):681-688
Polyamines (putrescine, spermidine, and spermine) are essential polycations that play important roles in various physiological and pathophysiological processes in mammalian cells. The study was to investigate their role in cardioprotection against ischemia/reperfusion (I/R) injury and the underlying mechanism. Isolated hearts from male Sprague-Dawley rats were Langendorff-perfused and cardiac I/R was achieved by 30 min of global ischemia followed by 120 min of reperfusion. Different concentrations of polyamines (0.1, 1, 10, and 15 μmol/L of putrescine, spermidine, and spermine), cyclosporin A (0.2 μmol/L), or atractyloside (20 μmol/L) were given 10 min before the onset of reperfusion. The hemodynamics were monitored; the lactate dehydrogenase (LDH) levels in the coronary effluent were measured spectrophotometrically; infarct size was determined by the 2,3,5-triphenyltetrazolium chloride staining method; and mitochondrial permeability transition pore (MPTP) opening was determined spectrophotometrically by the Ca-induced swelling of isolated cardiac mitochondria. The results showed that compared to I/R alone, 0.1 and 1 μmol/L polyamines treatment improved heart function, reduced LDH release, decreased infarct size, and these effects were inhibited by atractyloside (MPTP activator). In isolated mitochondria from normal rats, 0.1 and 1 μmol/L polyamines treatment inhibited MPTP opening. However, 10 and 15 μmol/L polyamines treatment had the opposite effects, and these effects were inhibited by cyclosporin A (MPTP inhibitor). Our findings showed that polyamines may have either protective or damaging effects on hearts suffering from I/R by inhibiting or activating MPTP opening.
Animals
;
Cyclosporine
;
pharmacology
;
Male
;
Mitochondria, Heart
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocardial Reperfusion Injury
;
physiopathology
;
Polyamines
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
4.Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion.
Crystal A LEE ; Lih-Shen CHIN ; Lian LI
Protein & Cell 2018;9(8):693-716
Hypertonia is a neurological dysfunction associated with a number of central nervous system disorders, including cerebral palsy, Parkinson's disease, dystonia, and epilepsy. Genetic studies have identified a homozygous truncation mutation in Trak1 that causes hypertonia in mice. Moreover, elevated Trak1 protein expression is associated with several types of cancers and variants in Trak1 are linked to childhood absence epilepsy in humans. Despite the importance of Trak1 in health and disease, the mechanisms of Trak1 action remain unclear and the pathogenic effects of Trak1 mutation are unknown. Here we report that Trak1 has a crucial function in regulation of mitochondrial fusion. Depletion of Trak1 inhibits mitochondrial fusion, resulting in mitochondrial fragmentation, whereas overexpression of Trak1 elongates and enlarges mitochondria. Our analyses revealed that Trak1 interacts and colocalizes with mitofusins on the outer mitochondrial membrane and functions with mitofusins to promote mitochondrial tethering and fusion. Furthermore, Trak1 is required for stress-induced mitochondrial hyperfusion and pro-survival response. We found that hypertonia-associated mutation impairs Trak1 mitochondrial localization and its ability to facilitate mitochondrial tethering and fusion. Our findings uncover a novel function of Trak1 as a regulator of mitochondrial fusion and provide evidence linking dysregulated mitochondrial dynamics to hypertonia pathogenesis.
Adaptor Proteins, Vesicular Transport
;
metabolism
;
Animals
;
HeLa Cells
;
Humans
;
Membrane Fusion
;
Mice
;
Mitochondria
;
metabolism
;
Mitochondrial Proteins
;
deficiency
;
metabolism
;
Muscle Proteins
;
deficiency
;
metabolism
;
Tumor Cells, Cultured
5.Role of mitochondrial permeability transition pore in mediating the inhibitory effect of gastrodin on oxidative stress in cardiac myocytes .
Xuechao HAN ; Jingman XU ; Sen XU ; Yahan SUN ; Mali HE ; Xiaodong LI ; Xinyu LI ; Jiayi PI ; Rui YU ; Wei TIAN
Journal of Southern Medical University 2018;38(11):1306-1311
OBJECTIVE:
To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes.
METHODS:
H9c2 cardiac myocytes were treated with HO, gastrodin, gastrodin+HO, cyclosporin A (CsA), or CsA+gas+HO group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells.
RESULTS:
Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in HO-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in HO-exposed cells.
CONCLUSIONS
Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.
Adenosine Triphosphate
;
analysis
;
Apoptosis
;
drug effects
;
Benzyl Alcohols
;
antagonists & inhibitors
;
pharmacology
;
Caspase 3
;
analysis
;
Cell Line
;
Cell Survival
;
drug effects
;
Cyclosporine
;
pharmacology
;
Cytochromes c
;
analysis
;
Glucosides
;
antagonists & inhibitors
;
pharmacology
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Oxidative Stress
;
Reactive Oxygen Species
;
analysis
6.A Population-Based Genomic Study of Inherited Metabolic Diseases Detected Through Newborn Screening.
Kyoung Jin PARK ; Seungman PARK ; Eunhee LEE ; Jong Ho PARK ; June Hee PARK ; Hyung Doo PARK ; Soo Youn LEE ; Jong Won KIM
Annals of Laboratory Medicine 2016;36(6):561-572
BACKGROUND: A newborn screening (NBS) program has been utilized to detect asymptomatic newborns with inherited metabolic diseases (IMDs). There have been some bottlenecks such as false-positives and imprecision in the current NBS tests. To overcome these issues, we developed a multigene panel for IMD testing and investigated the utility of our integrated screening model in a routine NBS environment. We also evaluated the genetic epidemiologic characteristics of IMDs in a Korean population. METHODS: In total, 269 dried blood spots with positive results from current NBS tests were collected from 120,700 consecutive newborns. We screened 97 genes related to NBS in Korea and detected IMDs, using an integrated screening model based on biochemical tests and next-generation sequencing (NGS) called NewbornSeq. Haplotype analysis was conducted to detect founder effects. RESULTS: The overall positive rate of IMDs was 20%. We identified 10 additional newborns with preventable IMDs that would not have been detected prior to the implementation of our NGS-based platform NewbornSeq. The incidence of IMDs was approximately 1 in 2,235 births. Haplotype analysis demonstrated founder effects in p.Y138X in DUOXA2, p.R885Q in DUOX2, p.Y439C in PCCB, p.R285Pfs*2 in SLC25A13, and p.R224Q in GALT. CONCLUSIONS: Through a population-based study in the NBS environment, we highlight the screening and epidemiological implications of NGS. The integrated screening model will effectively contribute to public health by enabling faster and more accurate IMD detection through NBS. This study suggested founder mutations as an explanation for recurrent IMD-causing mutations in the Korean population.
Computational Biology
;
DNA/chemistry/isolation & purification/metabolism
;
Dried Blood Spot Testing
;
Galactokinase
;
Genomics
;
Haplotypes
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Incidence
;
Infant, Newborn
;
Membrane Proteins/genetics
;
Metabolic Diseases/*diagnosis/epidemiology/genetics
;
Metabolism, Inborn Errors/diagnosis/epidemiology/genetics
;
Mitochondrial Membrane Transport Proteins/genetics
;
Neonatal Screening
;
Polymorphism, Genetic
;
Republic of Korea/epidemiology
;
Sequence Analysis, DNA
7.The influence of the aerobic endurance training on the skeletal muscular mitochondria function and PI3K-Akt protein expression.
Shao-dong LIU ; Yan-qiu ZHANG ; Jiang CAO
Chinese Journal of Applied Physiology 2016;32(1):55-58
OBJECTIVETo determine the role of phosphatidylinositol 3-kinase--protein kinase B (PI3K-Akt) signaling pathway in the pro- tective effect of aerobic endurance training on the skeletal muscular mitochondria.
METHODSThirty-six rats were randomly divided into three groups( n = 12): control group, aerobic endurance training group and one-time exhaustive group. After the intervention, the quadriceps femoris muscle sample was obtained to detect the mitochondrial membrane potential( MMP), the activities of succinate dehydrogenase (SDH) and cy- tochrome coxidase (COX), and the protein levels of p-PI3K and p-Akt.
RESULTSCompared with the control group, the levels of mitochondrial membrane potential, the activities of succinate dehydrogenase and cytochrome coxidase, and the protein levels of p-PI3K and p-Akt were all significantly decreased in the one-time exhaustive group (P < 0.05). However, all the above was partially reversed in the endurance training group (P < 0.05), and there was no obvious difference with the control group (P > 0.05).
CONCLUSIONAerobic endurance training plays an important role in the protective effect on the skeletal muscular mitochondria, the mechanism may be related to activation PI3K-Akt signaling pathway.
Animals ; Electron Transport Complex IV ; metabolism ; Membrane Potential, Mitochondrial ; Mitochondria ; physiology ; Muscle, Skeletal ; physiology ; Phosphatidylinositol 3-Kinases ; metabolism ; Physical Conditioning, Animal ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Signal Transduction ; Succinate Dehydrogenase ; metabolism
8.Mutation screening and prenatal diagnosis of methylmalonic academia in a Chinese pedigree by Ion Torrent semiconductor sequencing.
Li LI ; Dingyuan MA ; Yun SUN ; Jingjing ZHANG ; Yuguo WANG ; Tao JIANG ; Zhengfeng XU
Chinese Journal of Medical Genetics 2016;33(2):181-185
OBJECTIVETo identify pathogenic mutations in a Chinese pedigree affected with methylmalonic academia for genetic counseling and prenatal diagnosis.
METHODSMolecular analysis of the MUT, MMACHC, MMAA and MMAB genes was performed for the proband with methylmalonic academia by Ion Torrent semiconductor sequencing. Candidate mutations were validated by Sanger sequencing. The couple was offered prenatal diagnosis via analyzing of the fetal DNA through amniocentesis.
RESULTSThe proband was found to be compound heterozygous for c.609G>A (p.Trp203X) and c.658-660del AAG (p.Lys220del) mutations, which were inherited respectively from each of his parents. Prenatal diagnosis showed that the fetus has inherited two wild-type parental alleles.
CONCLUSIONThe targeted Ion Torrent PGM sequencing has detected pathogenic mutations in the Chinese pedigree affected with methylmalonic academia, which has provided molecular evidence for clinical diagnosis, genetic counseling and prenatal diagnosis for the family.
Adult ; Alkyl and Aryl Transferases ; genetics ; Amino Acid Metabolism, Inborn Errors ; embryology ; genetics ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; Carrier Proteins ; genetics ; China ; Female ; High-Throughput Nucleotide Sequencing ; instrumentation ; methods ; Humans ; Infant ; Male ; Methylmalonyl-CoA Mutase ; genetics ; Mitochondrial Membrane Transport Proteins ; genetics ; Molecular Sequence Data ; Mutation ; Pedigree ; Pregnancy ; Prenatal Diagnosis ; instrumentation ; methods
9.IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets.
Jing YUAN ; Pei-wu DING ; Miao YU ; Shao-shao ZHANG ; Qi LONG ; Xiang CHENG ; Yu-hua LIAO ; Min WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):679-683
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Blood Platelets
;
cytology
;
drug effects
;
metabolism
;
Cell Separation
;
Cyclosporine
;
pharmacology
;
Dual Specificity Phosphatase 2
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Interleukin-17
;
metabolism
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
P-Selectin
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Platelet Activation
;
drug effects
;
Platelet Aggregation
;
drug effects
;
Primary Cell Culture
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
10.Effects of Panax quinquefolium saponin on phosphatidylinositol 3-kinase/serine threonine kinase pathway of neonatal rat myocardial cells subjected to hypoxia.
Chun-yu GUO ; Xiao-juan MA ; Jing-shang WANG ; Ying SHI ; Xin LIU ; Hui-jun YIN ; Ke-ji CHEN
Chinese journal of integrative medicine 2015;21(5):384-388
OBJECTIVETo explore the effects of Panax Quinquefolium Saponin (PQS) on phosphatidylinositol 3-kinase/serine threonine kinase (PI3K/Akt) pathway of neonatal rat myocardial cells subjected to hypoxia.
METHODSNeonatal rat myocardial cells were cultured in vitro. After the myocardial cell injury was induced by hypoxia, the cells were randomized into 5 groups: the normal group, the model group, the positive control group (Ciclosporin A, 2 µ mol/L), the low-dose PQS group (PQSL, 25mg/L), and the high-dose PQS group (PQSH, 50 mg/L). Morphology and behavior of myocardial cells were observed under an inverted microscope. Apoptosis rate and lactate dehydrogenase (LDH) leakage rate of myocardial cells were determined by colorimetry. Mitochondrial transmembrane potential was assessed using a fluorexon laser. Phospho-glycogen synthase kinase (GSK)-3β and phospho-Akt as well as cytochrome C were determined by Western blot
RESULTSLDH leakage in the Ciclosporin A group, PQSH group and PQSL group reduced progressively compared with the model group (P<0.05). Akt and GSK-3β was strongly phosphorylated after treatment with Ciclosporin A and PQS compared with the model group (P<0.05, P<0.01). Compared with the model group (16.41±1.74; 35.28±6.30), both the integrated optical density of mitochondrial permeability transition pore (MPTP) and the mitochondrial transmembrane potential significantly increased in the PQSH group (42.74±2.12; 71.36±6.54) and the PQSL group (39.58±1.49; 66.99±5.45; P<0.05, P<0.01). However, the protein of cytochrome C outside the mitochondrion decreased in the PQSH group (273.66±14.61) and the PQSL group (259.62±17.31) compared with the model group (502.41±17.76; P<0.05).
CONCLUSIONThrough activation of the PI3K/Akt pathway and inhibition of the MPTP, PQS might protect the heart against ischemia injury and apoptosis of myocardial cells.
Animals ; Animals, Newborn ; Cell Hypoxia ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Cells, Cultured ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; L-Lactate Dehydrogenase ; metabolism ; Membrane Potential, Mitochondrial ; drug effects ; Mitochondria ; drug effects ; metabolism ; Mitochondrial Membrane Transport Proteins ; metabolism ; Myocytes, Cardiac ; cytology ; drug effects ; enzymology ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; drug effects ; Protein-Serine-Threonine Kinases ; metabolism ; Rats, Sprague-Dawley ; Saponins ; pharmacology ; Signal Transduction ; drug effects

Result Analysis
Print
Save
E-mail