1.Mechanism of the pretreatment with electroacupuncture of "biaoben acupoint combination" for regulating cardiomyocyte mitochondrial fission in the rats of myocardial ischemia-reperfusion injury.
Yanlin ZHANG ; Song WU ; Qianru GUO ; Yuntao YU ; Sunyi WANG ; Yuqi WEI ; Xiaoman WAN ; Zhen LU ; Xiaoru HE
Chinese Acupuncture & Moxibustion 2025;45(3):335-344
OBJECTIVE:
To observe the effect of electroacupuncture (EA) pretreatment of "biaoben acupoint combination" on cardiomyocyte mitochondrial fission in the rats with myocardial ischemia-reperfusion injury (MIRI) and explore its mechanism.
METHODS:
Fifty male SD rats were randomly divided into a sham-operation group, a model group, an EA pretreatment group, an EA pretreatment + Compound C group and an EA pretreatment+ML385 group, 10 rats in each group. In the EA pretreatment, the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, EA was delivered at bilateral "Neiguan" (PC6), "Zusanli" (ST36) and "Guanyuan" (CV4) for 20 min, with continuous wave and 2 Hz of frequency, 1 mA of current, once daily for consecutive 7 days. On day 8, in the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, 30 min before model preparation, the intraperitoneal injection with Compound C (0.3 mg/kg) and ML385 (30 mg/kg) was administered respectively. Except in the sham-operation group, the ligation of the left anterior descending coronary artery was performed to prepare MIRI rat model in the rest groups. In the sham-operation group, the thread was not ligated. After modeling, the content of reactive oxygen species (ROS) in the ischemic area was measured by flow cytometry, superoxide dismutase (SOD) was detected using xanthine oxidase method, and malondialdelyde (MDA) was detected using thiobarbituric acid (TBA) chromatometry. The morphology of myocardial tissue in the ischemic area was observed with HE staining, and the mitochondria ultrastructure of cardiomyocytes observed under transmission electron microscopy. Using immunofluorescence analysis, the positive expression of mitochondrial fission factor (MFF), mitochondrial fission 1 protein antibody (Fis1) and dynamin-related protein 1 (Drp1) was detected; and with immunohistochemical method used, the protein expression of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor E2-associated factor2 (Nrf2) and Drp1 in the ischemic area was detected.
RESULTS:
Compared with the sham-operation group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 increased in the model group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 decreased (P<0.01), and the protein expression of Drp1 elevated (P<0.01). Compared with the model group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01), and the protein expression of Drp1 declined (P<0.01); and in the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the positive expression of MFF, Fis1 and Drp1, and the protein expression of Drp1 were all reduced (P<0.01). When compared with the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01, P<0.05), and the protein expression of Drp1 decreased (P<0.05). In comparison with the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the cardiac muscle fiber rupture, cell swelling and mitochondrial disorders were obviously alleviated in the EA pretreatment group. The morphological changes were similar among the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group.
CONCLUSION
Electroacupuncture pretreatment of "biaoben acupoint combination" attenuates myocardial injury in MIRI rats, probably through promoting the phosphorylation of AMPK and Nrf2, inhibiting the excessive mitochondrial fission induced by Drp1, and reducing mitochondrial dysfunction caused by mitochondrial fragmentation and vacuolation.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Myocardial Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
;
Rats
;
Acupuncture Points
;
Mitochondrial Dynamics
;
Humans
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Superoxide Dismutase/metabolism*
2.Critical role of mitochondrial dynamics in chronic respiratory diseases and new therapeutic directions.
Xiaomei WANG ; Ziming ZHU ; Haocheng JIA ; Xueyi LU ; Yingze ZHANG ; Yingxin ZHU ; Jinzheng WANG ; Yanfang WANG ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(15):1783-1793
Chronic obstructive pulmonary disease (COPD) and pulmonary hypertension (PH) are both chronic progressive respiratory diseases that cannot be completely cured. COPD is characterized by irreversible airflow limitation, chronic airway inflammation, and gradual decline in lung function, whereas PH is characterized by pulmonary vasoconstriction, remodeling, and infiltration of inflammatory cells. These diseases have similar pathological features, such as vascular hyperplasia, arteriolar contraction, and inflammatory infiltration. Despite these well-documented observations, the exact mechanisms underlying the occurrence and development of COPD and PH remain unclear. Evidence that mitochondrial dynamics imbalance is one major factor in the development of COPD and PH. Mitochondrial dynamics is precisely regulated by mitochondrial fusion proteins and fission proteins. When mitochondrial dynamics equilibrium is disrupted, it causes mitochondrial and even cell morphological dysfunction. Mitochondrial dynamics participates in various pathological processes for heart and lung disease. Mitochondrial dynamics may be different in the early and late stages of COPD and PH. In the early stages of the disease, mitochondrial fusion increases, inhibiting fission, and thereby compensatorily increasing adenosine triphosphate (ATP) production. With the development of the disease, mitochondria decompensation causes excessive fission. Mitochondrial dynamics is involved in the development of COPD and PH in a spatiotemporal manner. Based on this understanding, treatment strategies for mitochondrial dynamics abnormalities may be different at different stages of COPD and PH disease. This article will provide new ideas for the potential treatment of related diseases.
Humans
;
Mitochondrial Dynamics/physiology*
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Hypertension, Pulmonary/metabolism*
;
Mitochondria/metabolism*
;
Animals
3.Mechanisms of mitochondrial dynamics in ischemic stroke and therapeutic strategies.
Xin-Yue ZHENG ; Ming ZHANG ; Kai-Qi SU ; Zhi-Min DING
Acta Physiologica Sinica 2025;77(3):523-533
As a common neurological disease in China, stroke has an extremely high rate of death and disability, of which 80% is ischemic stroke (IS), causing a serious burden to individuals and society. Neuronal death is an important factor in the pathogenesis of stroke. Studies have shown that mitochondrial dynamics, as a key mechanism regulating intracellular energy metabolism and cell death, plays an important role in the pathogenesis of IS. In recent years, targeting mitochondrial dynamics has become an emerging therapeutic tool to improve neurological impairment after stroke. This paper reviews the research advance in recent years in IS mitochondrial dynamics, summarizing and discussing the overview of mitochondrial dynamics, the role of mitochondrial dynamics in IS, and the studies on mitochondrial dynamics-based treatment of IS. This paper helps to explore the mechanism of the role of mitochondrial dynamics in IS and effective interventions, and provides a theoretical strategy for targeting mitochondrial dynamics to treat IS in the clinic.
Humans
;
Mitochondrial Dynamics/physiology*
;
Ischemic Stroke/metabolism*
;
Mitochondria/physiology*
;
Animals
;
Brain Ischemia/physiopathology*
;
Energy Metabolism
4.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
5.Protective mechanism of Chaihu Shugan San against CORT-induced damage in PC12 cells based on mitochondrial dynamics.
Ling-Yuan ZHANG ; Qi-Qi ZHENG ; Jia-Li SHI ; Pei-Fang WANG ; Jia-Li LU ; Jian-Ying SHEN
China Journal of Chinese Materia Medica 2025;50(16):4546-4554
In this report, the protective effect and molecular mechanism of Chaihu Shugan San-containing serum on corticosterone(CORT)-induced mitochondrial damage in pheochromocytoma(PC12) cells was studied based on CORT-induced rat PC12 cell model. The cultured cells were divided into five groups: blank control group, CORT group(400 μmol·L~(-1) CORT), Chaihu Shugan San-containing serum group(400 μmol·L~(-1) CORT + 10% Chaihu Shugan San-containing serum), control serum group(400 μmol·L~(-1) CORT + 10% control serum), and fluoxetine group(400 μmol·L~(-1) CORT + 10% fluoxetine-containing serum). The study was carried out by cell activity detection, mitochondrial morphology observation, membrane potential measurement, energy metabolism analysis, and mitochondrial dynamics-related protein detection. The results showed that CORT treatment significantly reduced the survival rate of PC12 cells, altered mitochondrial morphology, and decreased mitochondrial membrane potential and adenosine triphosphate(ATP) synthetic rate. Both Chaihu Shugan San-and fluoxetine-containing serum significantly increased the survival rate of CORT-treated PC12 cells and the ATP synthetic rate in the mitochondria. Unlike fluoxetine, Chaihu Shugan San-containing serum significantly inhibited the decrease in mitochondrial membrane potential caused by CORT and increased the oxygen consumption rate(OCR) values of both mitochondrial maximum respiration and reserve respiration capacity. Western blot analysis showed that CORT induced upregulated protein expressions of dynamin-related protein 1(Drp1) and peroxisome proliferator-activated receptor gamma co-activator 1α(PGC-1α) in PC12 cells and specific protein expression of optic atrophy protein 1(OPA1), yet it repressed the protein expressions of silent information regulator 1(SIRT1) and mitochondrial fusion protein 1(Mfn1) in PC12 cells. Both Chaihu Shugan San-and fluoxetine-containing serum significantly inhibited the protein expression of Drp1. However, only Chaihu Shugan San-containing serum could significantly inhibit the CORT-induced upregulation protein of PGC-1α. RESULTS:: herein suggest that Chaihu Shugan San-containing serum can alleviate CORT-induced damage in PC12 cells, which may be related to the mitochondrial fragmentation/lipid peroxidation protection by Drp1 inhibition, as well as mitochondrial dynamics and energy metabolism mediated by PGC-1α/SIRT1 signaling pathway.
Animals
;
PC12 Cells
;
Rats
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Corticosterone/adverse effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Protective Agents/pharmacology*
;
Cell Survival/drug effects*
6.Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice.
Lifan ZHANG ; Duyan GENG ; Guizhi XU ; Hongxia AN
Journal of Biomedical Engineering 2025;42(4):707-715
Alzheimer's disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group ( P < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved ( P < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.
Animals
;
Heart Rate/physiology*
;
Mice
;
Alzheimer Disease/therapy*
;
Mice, Transgenic
;
Mitochondrial Dynamics/radiation effects*
;
Magnetic Field Therapy/methods*
;
Magnetic Fields
;
Disease Models, Animal
;
Mitochondria
;
Male
;
Maze Learning
;
Cognition
;
Dementia/therapy*
7.Research progress on the relationship between mitochondrial dynamics imbalance and novel coronavirus infection-related acute respiratory distress syndrome.
Zijia ZHANG ; Bin DU ; Xunyao WU ; Xiaoyun HU ; Shitong DIAO ; Run DONG
Chinese Critical Care Medicine 2025;37(3):300-304
Patients with severe pneumonia caused by novel coronavirus infection are often complicated with acute respiratory distress syndrome (ARDS), which has a high mortality. ARDS is characterized by diffuse alveolar damage, pulmonary edema, and hypoxemia. Mitochondria are prone to morphological and functional abnormalities under hypoxia and viral infection, which can lead to cell apoptosis and damage, severely impacting the disease progression. Mitochondria maintain homeostasis through fission and fusion. In ARDS, hypoxia leads to the phosphorylation of dynamin-related protein 1 (Drp1), triggering excessive mitochondrial fission and damaging the alveolar epithelial barrier. Animal experiments have shown that inhibiting this process can alleviate lung injury, providing a potential direction for treatment. The pathology of novel coronavirus infection-related ARDS is similar to that of typical ARDS but more severe. Viral infection and hypoxia disrupt the mitochondrial balance, causing fission and autophagy abnormalities, promoting oxidative stress and mitochondrial DNA (mtDNA) release, activating inflammasomes, inducing the expression of hypoxia-inducible factor-1α (HIF-1α), exacerbating viral infection, inflammation, and coagulation reactions, and resulting in multiple organ damage. Mechanical ventilation and glucocorticoids are commonly used in the treatment of novel coronavirus infection-related ARDS. Mechanical ventilation is likely to cause lung and diaphragm injuries and changes in mitochondrial dynamics, while the lung protective ventilation strategy can reduce the adverse effects. Glucocorticoids can regulate mitochondrial function and immune response and improve the patient's condition through multiple pathways. The mitochondrial dynamics imbalance in novel coronavirus infection-related ARDS is caused by hypoxia and viral proteins, leading to lung and multiple organ injuries. To clarify the pathophysiological mechanism of mitochondrial dynamics imbalance in novel coronavirus infection-related ARDS and explore effective strategies for regulating mitochondrial dynamics balance to treat this disease, so as to provide new treatment targets and methods for patients with novel coronavirus infection-related ARDS. The existing treatments have limitations. Future research needs to deeply study the mechanism of mitochondrial dysfunction, develop new therapies and regulatory strategies, and improve the treatment effect.
Humans
;
Respiratory Distress Syndrome/etiology*
;
COVID-19
;
Mitochondrial Dynamics
;
Mitochondria/metabolism*
;
DNA, Mitochondrial
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Dynamins
;
SARS-CoV-2
8.Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.
Pingping LIN ; Hong CHEN ; Zekun CUI ; Boyang YU ; Junping KOU ; Fang LI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):54-63
Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro. High-performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS) characterized 23 main components of AN. AN significantly improved cardiac function in the TAC-induced mice. Furthermore, AN considerably reduced the serum levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), cardiac troponin T (CTn-T), and interleukin-6 (IL-6) and mitigated inflammatory cell infiltration. Post-AN treatment, TAC-induced heart size approached normal. AN decreased cardiomyocyte cross-sectional area and attenuated the upregulation of cardiac hypertrophy marker genes (ANP, BNP, and MYH7) in vivo and in vitro. Concurrently, AN alleviated collagen deposition in TAC-induced mice. AN also reduced the expression of fibrosis-related indicators (COL1A1 and COL3A1) and inhibited the activation of the transforming growth factor-β1 (TGF-β1)/mothers against decapentaplegic homolog 3 (Smad3) pathway. Thus, AN improved TAC-induced cardiac remodeling. Moreover, AN downregulated p-dynamin-related protein (Drp1) (Ser616) expression and upregulated mitogen 2 (MFN-2) and optic atrophy 1 (OPA1) expression in vivo and in vitro, thereby restoring mitochondrial fusion and fission balance. In conclusion, AN improves cardiac remodeling by regulating mitochondrial dynamic balance, providing experimental data for the rational application of Chinese medicine prescriptions with AN as the main component in clinical practice.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Myocytes, Cardiac/metabolism*
;
Mice
;
Rats
;
Male
;
Mitochondrial Dynamics/drug effects*
;
Ventricular Remodeling/drug effects*
;
Astragalus Plant/chemistry*
;
Mice, Inbred C57BL
;
Rhizome/chemistry*
;
Panax notoginseng/chemistry*
;
Rats, Sprague-Dawley
;
Natriuretic Peptide, Brain/genetics*
;
Humans
;
Angiotensin II
;
Astragalus propinquus
9.Piroctone olamine disrupts mitochondrial dynamics in glioma cells through the PI3K/AKT pathway.
Wenqin XU ; Jingjing YE ; Fei WANG ; Tianbing CHEN
Journal of Southern Medical University 2023;43(5):764-771
OBJECTIVE:
To investigate the growth-inhibitory and pro-apoptotic effects of piroctone olamine (PO) on glioma cells and explore the underlying mechanism.
METHODS:
Human glioma cell lines U251 and U373 were treated with PO and the changes in cell proliferation were detected using CCK-8 assay and EdU assay. Clone formation assay and flow cytometry were used to examine the changes in clone formation ability and apoptosis of the treated cells. Mitochondrial membrane potential of the cells and morphological changes of the mitochondria were detected using JC-1 staining and a fluorescence probe, respectively. The expressions of mitochondrial fission protein DRP1 and the fusion protein OPA1 were determined with Western blotting. Transcriptome sequencing and differential gene enrichment analysis was performed, and the expression levels of PI3K, AKT and p-AKT in the treated cells were verified using Western blotting.
RESULTS:
CCK-8 assay showed that PO significantly inhibited the proliferation of U251 and U373 cells in a time- and dose-dependent manner (P < 0.001). EdU test showed that the proliferative activity of PO-treated cells was significantly decreased, and the number of cell colonies also decreased significantly (P < 0.01). PO treatment significantly increased apoptotic rates (P < 0.01), decreased mitochondrial membrane potential and caused obvious changes in mitochondrial morphology of the cells. Pathway enrichment analysis showed that the down-regulated genes were significantly enriched in the PI3K/AKT pathway, which was verified by Western blotting showing significantly down-regulated expression levels of PI3K, AKT and p-AKT in PO-treated cells (P < 0.05).
CONCLUSION
PO interferes with mitochondrial fusion and fission function through the PI3K/AKT pathway, thereby inhibiting the proliferation and increasing apoptosis of glioma cells.
Humans
;
Glioma
;
Mitochondrial Dynamics
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
10.Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF.
Miyesaier ABUDUREYIMU ; Mingjie YANG ; Xiang WANG ; Xuanming LUO ; Junbo GE ; Hu PENG ; Yingmei ZHANG ; Jun REN
Frontiers of Medicine 2023;17(6):1219-1235
Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME ("two-hit" model) for 15 weeks. Diastolic function was assessed using echocardiography and noninvasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in "two-hit"-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e' ratio, decreased e' value and maximal velocity of re-lengthening (-dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in "two-hit" diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.
Male
;
Mice
;
Animals
;
Heart Failure/drug therapy*
;
Stroke Volume/physiology*
;
Ventricular Function, Left/physiology*
;
Berberine/therapeutic use*
;
Disease Models, Animal
;
Mitochondrial Dynamics
;
Myocardium
;
Homeostasis

Result Analysis
Print
Save
E-mail