2.Therapeutic potential of NADH: in neurodegenerative diseases characterizde by mitochondrial dysfunction.
Ziyi CHEN ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):57-62
Nicotinamide adenine dinucleotide(NADH) in its reduced form of is a key coenzyme in redox reactions, essential for maintaining energy homeostasis.NADH and its oxidized counterpart, NAD+, form a redox couple that regulates various biological processes, including calcium homeostasis, synaptic plasticity, anti-apoptosis, and gene expression. The reduction of NAD+/NADH levels is closely linked to mitochondrial dysfunction, which plays a pivotal role in the cascade of various neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease.Auditory neuropathy(AN) is recognized as a clinical biomarker in neurodegenerative disorders. Furthermore, mitochondrial dysfunction has been identified in patients with mutations in genes like OPA1and AIFM1. However, effective treatments for these conditions are still lacking. Increasing evidence suggests that administratering NAD+ or its precursors endogenously may potentially prevent and slow disease progression by enhancing DNA repair and improving mitochondrial function. Therefore, this review concentrates on the metabolic pathways of NAD+/NADH production and their biological functions, and delves into the therapeutic potential and mechanisms of NADH in treating AN.
Humans
;
NAD/metabolism*
;
Neurodegenerative Diseases/metabolism*
;
Mitochondria
;
Oxidation-Reduction
;
Mitochondrial Diseases
4.Research progress on the role of chondrocyte mitochondrial homeostasis imbalance in the pathogenesis of osteoarthritis.
Quan CHEN ; Limin WU ; Cili DAWA ; Bin SHEN
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(6):748-757
OBJECTIVE:
To summarize the role of chondrocyte mitochondrial homeostasis imbalance in the pathogenesis of osteoarthritis (OA) and analyze its application prospects.
METHODS:
The recent literature at home and abroad was reviewed to summarize the mechanism of mitochondrial homeostasis imbalance, the relationship between mitochondrial homeostasis imbalance and the pathogenesis of OA, and the application prospect in the treatment of OA.
RESULTS:
Recent studies have shown that mitochondrial homeostasis imbalance, which is caused by abnormal mitochondrial biogenesis, the imbalance of mitochondrial redox, the imbalance of mitochondrial dynamics, and damaged mitochondrial autophagy of chondrocytes, plays an important role in the pathogenesis of OA. Abnormal mitochondrial biogenesis can accelerate the catabolic reaction of OA chondrocytes and aggravate cartilage damage. The imbalance of mitochondrial redox can lead to the accumulation of reactive oxygen species (ROS), inhibit the synthesis of extracellular matrix, induce ferroptosis and eventually leads to cartilage degradation. The imbalance of mitochondrial dynamics can lead to mitochondrial DNA mutation, decreased adenosine triphosphate production, ROS accumulation, and accelerated apoptosis of chondrocytes. When mitochondrial autophagy is damaged, dysfunctional mitochondria cannot be cleared in time, leading to ROS accumulation, which leads to chondrocyte apoptosis. It has been found that substances such as puerarin, safflower yellow, and astaxanthin can inhibit the development of OA by regulating mitochondrial homeostasis, which proves the potential to be used in the treatment of OA.
CONCLUSION
The mitochondrial homeostasis imbalance in chondrocytes is one of the most important pathogeneses of OA, and further exploration of the mechanisms of mitochondrial homeostasis imbalance is of great significance for the prevention and treatment of OA.
Humans
;
Reactive Oxygen Species/metabolism*
;
Chondrocytes/metabolism*
;
Osteoarthritis/metabolism*
;
Homeostasis
;
Mitochondria/metabolism*
;
Cartilage, Articular/metabolism*
5.Research progress on the effect of mitochondrial network remodeling on macrophages.
Lianlian ZHU ; Xiangmin KONG ; Wei ZHU
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):656-662
Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.
Mitochondria
;
Mitophagy
;
Homeostasis/physiology*
;
Phagocytosis
;
Macrophages/metabolism*
6.Regulation of Mitochondria on Platelet Apoptosis and Activation.
Ying HU ; Li-Li ZHA ; Ke-Sheng DAI
Journal of Experimental Hematology 2023;31(3):816-822
OBJECTIVE:
To explore the regulation of mitochondria on platelet apoptosis and activation, and the relationship between platelet apoptosis and activation.
METHODS:
Platelets were isolated from peripheral venous blood of healthy volunteers. Cyclosporin A (CsA), which has a protective effect on the function of platelet mitochondria, BAPTA, which can chelate calcium ions across membranes in platelets, and NAC, an antioxidant that reduces the level of intracellular reactive oxygen species, were selected for coincubation with washed platelets, respectively. By flow cytometry, platelet aggregator was used to detect the changes of platelet mitochondrial function and platelet activation indexes after different interventions.
RESULTS:
H89, staurosporine, and A23187 led to platelet mitochondrial abnormalities, while CsA could effectively reverse the decline of platelet mitochondrial membrane potential caused by them. Antioxidant NAC could reverse platelet mitochondrial damage correspondingly, and completely reverse platelet shrinkage and phosphatidylserine eversion induced by H89. BAPTA, prostaglandin E1, acetylsalicylic acid and other inhibitors could not reverse the decline of platelet mitochondrial membrane potential.
CONCLUSION
Mitochondrial function plays an important role in platelet apoptosis and activation. Abnormal mitochondrial function causes the imbalance of reduction/oxidation state in platelets, which leads to platelet apoptosis. Platelet apoptosis and activation are independent signal processes.
Humans
;
Blood Platelets/metabolism*
;
Antioxidants/pharmacology*
;
Mitochondria/physiology*
;
Platelet Activation
;
Apoptosis
;
Membrane Potential, Mitochondrial
;
Reactive Oxygen Species/pharmacology*
7.Andrographolide protects against atrial fibrillation by alleviating oxidative stress injury and promoting impaired mitochondrial bioenergetics.
Pengcheng YU ; Jiaru CAO ; Huaxin SUN ; Yingchao GONG ; Hangying YING ; Xinyu ZHOU ; Yuxing WANG ; Chenyang QI ; Hang YANG ; Qingbo LV ; Ling ZHANG ; Xia SHENG
Journal of Zhejiang University. Science. B 2023;24(7):632-649
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia seen in clinical settings, which has been associated with substantial rates of mortality and morbidity. However, clinically available drugs have limited efficacy and adverse effects. We aimed to investigate the mechanisms of action of andrographolide (Andr) with respect to AF. We used network pharmacology approaches to investigate the possible therapeutic effect of Andr. To define the role of Andr in AF, HL-1 cells were pro-treated with Andr for 1 h before rapid electronic stimulation (RES) and rabbits were pro-treated for 1 d before rapid atrial pacing (RAP). Apoptosis, myofibril degradation, oxidative stress, and inflammation were determined. RNA sequencing (RNA-seq) was performed to investigate the relevant mechanism. Andr treatment attenuated RAP-induced atrial electrophysiological changes, inflammation, oxidative damage, and apoptosis both in vivo and in vitro. RNA-seq indicated that oxidative phosphorylation played an important role. Transmission electron microscopy and adenosine triphosphate (ATP) content assay respectively validated the morphological and functional changes in mitochondria. The translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the molecular docking suggested that Andr might exert a therapeutic effect by influencing the Keap1-Nrf2 complex. In conclusions, this study revealed that Andr is a potential preventive therapeutic drug toward AF via activating the translocation of Nrf2 to the nucleus and the upregulation of heme oxygenase-1 (HO-1) to promote mitochondrial bioenergetics.
Animals
;
Rabbits
;
Atrial Fibrillation/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Signal Transduction
;
NF-E2-Related Factor 2/pharmacology*
;
Molecular Docking Simulation
;
Oxidative Stress
;
Energy Metabolism
;
Mitochondria/metabolism*
;
Inflammation/metabolism*
;
Heme Oxygenase-1
8.Overexpression of miR-431-5p impairs mitochondrial function and induces apoptosis in gastric cancer cells via the Bax/Bcl-2/caspase3 pathway.
Jiaming WU ; Zhongquan DENG ; Yi ZHU ; Guangjian DOU ; Jin LI ; Liyong HUANG
Journal of Southern Medical University 2023;43(4):537-543
OBJECTIVE:
To investigate the expression of microRNA miR-431-5p in gastric cancer (GC) tissues and its effects on apoptosis and mitochondrial function in GC cells.
METHODS:
The expression level of miR-431-5p in 50 clinical samples of GC tissues and paired adjacent tissues was detected using real-time fluorescence quantitative PCR, and its correlation with the clinicopathological features of the patients was analyzed. A cultured human GC cell line (MKN-45 cells) were transfected with a miR-431-5p mimic or a negative control sequence, and the cell proliferation, apoptosis, mitochondrial number, mitochondrial potential, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were detected using CCK-8 assay, flow cytometry, fluorescent probe label, or ATP detection kit. The changes in the expression levels of the apoptotic proteins in the cells were detected with Western blotting.
RESULTS:
The expression level of miR-431-5p was significantly lower in GC tissues than in the adjacent tissues (P < 0.001) and was significantly correlated with tumor differentiation (P=0.0227), T stage (P=0.0184), N stage (P=0.0005), TNM stage (P=0.0414) and vascular invasion (P=0.0107). In MKN-45 cells, overexpression of miR-431-5p obviously inhibited cell proliferation and induced cell apoptosis, causing also mitochondrial function impairment as shown by reduced mitochondrial number, lowered mitochondrial potential, increased mPTP opening, increased ROS production and reduced ATP content. Overexpression of miR-431-5p significantly downregulated the expression of Bcl-2 and increased the expressions of pro-apoptotic proteins p53, Bcl-2 and cleaved caspase-3 protein.
CONCLUSION
The expression of miR-431-5p is down-regulated in GC, which results in mitochondrial function impairment and promotes cell apoptosis by activating the Bax/Bcl-2/caspase3 signaling pathway, suggesting the potential role of miR-431-5p in targeted therapy for GC.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
MicroRNAs/metabolism*
;
Mitochondria/metabolism*
;
Mitochondrial Permeability Transition Pore
;
Reactive Oxygen Species
;
Stomach Neoplasms/pathology*
9.Research progress of the regulatory role of autophagy in metabolic liver diseases.
Yu Xian LI ; Feng REN ; Yu CHEN
Chinese Journal of Hepatology 2023;31(1):105-108
Autophagy is one of several hepatic metabolic processes in which starved cells are supplied with glucose, free fatty acids, and amino acids to produce energy and synthesize new macromolecules. Moreover, it regulates the quantity and quality of mitochondria and other organelles. As the liver is a vital metabolic organ, specific forms of autophagy are necessary for maintaining liver homeostasis. Protein, fat, and sugar are the three primary nutrients that can be altered by different metabolic liver diseases. Drugs that have an effect on autophagy can either promote or inhibit autophagy, and as a result, it can either increase or inhibit the three major nutritional metabolisms that are affected by liver disease. Thus, this opens up a novel therapeutic option for liver disease.
Humans
;
Liver/metabolism*
;
Liver Diseases
;
Autophagy
;
Metabolic Diseases
;
Mitochondria
10.Role of Mitophagy in Myocardial Ischemia/Reperfusion Injury and Chinese Medicine Treatment.
Jun-Yan XIA ; Cong CHEN ; Qian LIN ; Jie CUI ; Jie WAN ; Yan LI ; Dong LI
Chinese journal of integrative medicine 2023;29(1):81-88
Mitophagy is one of the important targets for the prevention and treatment of myocardial ischemia/reperfusion injury (MIRI). Moderate mitophagy can remove damaged mitochondria, inhibit excessive reactive oxygen species accumulation, and protect mitochondria from damage. However, excessive enhancement of mitophagy greatly reduces adenosine triphosphate production and energy supply for cell survival, and aggravates cell death. How dysfunctional mitochondria are selectively recognized and engulfed is related to the interaction of adaptors on the mitochondrial membrane, which mainly include phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced kinase 1/Parkin, hypoxia-inducible factor-1 α/Bcl-2 and adenovirus e1b19k Da interacting protein 3, FUN-14 domain containing protein 1 receptor-mediated mitophagy pathway and so on. In this review, the authors briefly summarize the main pathways currently studied on mitophagy and the relationship between mitophagy and MIRI, and incorporate and analyze research data on prevention and treatment of MIRI with Chinese medicine, thereby provide relevant theoretical basis and treatment ideas for clinical prevention of MIRI.
Humans
;
Mitochondria/metabolism*
;
Mitophagy/genetics*
;
Myocardial Reperfusion Injury
;
Protein Kinases/metabolism*

Result Analysis
Print
Save
E-mail