2.Therapeutic potential of NADH: in neurodegenerative diseases characterizde by mitochondrial dysfunction.
Ziyi CHEN ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):57-62
Nicotinamide adenine dinucleotide(NADH) in its reduced form of is a key coenzyme in redox reactions, essential for maintaining energy homeostasis.NADH and its oxidized counterpart, NAD+, form a redox couple that regulates various biological processes, including calcium homeostasis, synaptic plasticity, anti-apoptosis, and gene expression. The reduction of NAD+/NADH levels is closely linked to mitochondrial dysfunction, which plays a pivotal role in the cascade of various neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease.Auditory neuropathy(AN) is recognized as a clinical biomarker in neurodegenerative disorders. Furthermore, mitochondrial dysfunction has been identified in patients with mutations in genes like OPA1and AIFM1. However, effective treatments for these conditions are still lacking. Increasing evidence suggests that administratering NAD+ or its precursors endogenously may potentially prevent and slow disease progression by enhancing DNA repair and improving mitochondrial function. Therefore, this review concentrates on the metabolic pathways of NAD+/NADH production and their biological functions, and delves into the therapeutic potential and mechanisms of NADH in treating AN.
Humans
;
NAD/metabolism*
;
Neurodegenerative Diseases/metabolism*
;
Mitochondria
;
Oxidation-Reduction
;
Mitochondrial Diseases
3.The role of mitochondria-associated endoplasmic reticulum membranes in age-related cardiovascular diseases.
Yu ZHANG ; Xin-Yi ZHAO ; Wen-Jun XIE ; Yi ZHANG
Acta Physiologica Sinica 2023;75(6):799-816
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are the physical connection sites between mitochondria and endoplasmic reticulum (ER). As the compartments controlling substance and information communications between ER and mitochondria, MAMs were involved in the regulation of various pathophysiological processes, such as calcium homeostasis, mitochondrial morphology and function, lipid metabolism and autophagy. In the past decades, accumulating lines of evidence have revealed the pivotal role of MAMs in diverse cardiovascular diseases (CVD). Aging is one of the major independent risk factors for CVD, which causes progressive degeneration of the cardiovascular system, leading to increased morbidity and mortality of CVD. This review aims to summarize the research progress of MAMs in age-related CVD, and explore new targets for its prevention and treatment.
Humans
;
Mitochondrial Membranes
;
Cardiovascular Diseases/metabolism*
;
Calcium Signaling/physiology*
;
Mitochondria/physiology*
;
Endoplasmic Reticulum/metabolism*
4.Effect of uridine on mitochondrial function.
Xueyi BAI ; Ding HUANG ; Pan XIE ; Ruiqiang SUN ; Hang ZHOU ; Yu LIU
Chinese Journal of Biotechnology 2023;39(9):3695-3709
Uridine is one of the essential nutrients in organisms. To maintain normal cell growth and intracellular metabolism, the uridine must be maintained at certain concentration. Recent studies have shown that uridine can reduce inflammatory response in organisms, participate in glycolysis, and regulate intracellular protein modification, such as glycosylation and acetylation. Furthermore, it can protect cells from hypoxic injury by reducing intracellular oxidative stress, promoting high-energy compounds synthesis. Previous studies have shown that the protective effects of uridine are closely related to its effect on mitochondria. This review summarizes the effect of uridine on mitochondrial function.
Uridine/metabolism*
;
Mitochondria/metabolism*
5.Regulation of Neuro-Microenvironment on Mitochondrial Mass of Hematopoietic Stem and Progenitor Cells.
Hong-Lin DUAN ; Tao CHENG ; Hui CHENG
Journal of Experimental Hematology 2023;31(6):1838-1844
OBJECTIVE:
To study the effects of the neuro-microenvironment on the mass of mitochondria in hematopoietic stem and progenitor cells (HSPC), and to understand the potential mechanisms how nerve regulates HSPC.
METHODS:
6-hydroxydopamine (6-OHDA) and capsaicin were used to interfere with the function of sympathetic nerve and nociceptive nerve in mitochondria-GFP reporter mice, respectively. The fluorescence intensity of GFP in bone marrow and spleen was measured by flow cytometry. The GFP median fluorescence intensity (MFI) of HSPC in normal bone marrow and spleen was analyzed and compared. The changes of the mitochondrial mass in HSPCs in each group after denervation were compared.
RESULTS:
Hematopoietic stem cells (HSC) had the highest mito-GFP MFI in steady-state (49 793±1 877), and the mito-GFP MFI gradually decreased during the differentiation of HSCs. Compared with control group, pharmaceutical nociceptive denervation significantly increased the mito-GFP MFI of bone marrow multipotent progenitor-1 (MPP1, 50 751±420 vs 44 020±510) and LKS- cells (15 673±65 vs 13 979±103); pharmaceutical sympathetic denervation significantly reduced the mito-GFP MFI of bone marrow LKS+ cells (21 667±351 vs 29 249±973).
CONCLUSION
Sympathetic and nociceptive nerves can regulate the mass of mitochondria in HSPC and affect the function of HSPCs.
Animals
;
Mice
;
Hematopoietic Stem Cells
;
Bone Marrow/metabolism*
;
Cell Differentiation
;
Mitochondria
;
Pharmaceutical Preparations/metabolism*
6.Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way.
Haitao YANG ; Yan WANG ; Hui FAN ; Feixue LIU ; Huimiao FENG ; Xueqing LI ; Mingyi CHU ; Enzhuang PAN ; Daoyang TENG ; Huizhen CHEN ; Jingquan DONG
Journal of Zhejiang University. Science. B 2023;24(11):1027-1036
随着铜绿假单胞菌(铜绿)的耐药性逐年增强,铜绿感染已经成为公共医疗卫生的重点关注问题。线粒体自噬及其介导的线粒体功能障碍在多种细菌感染中已被报道,但线粒体功能障碍在宿主调控铜绿感染中的作用尚不明确。因此,本研究建立铜绿刺激小鼠巨噬细胞感染模型和小鼠急性铜绿感染模型,探讨铜绿是否通过诱导线粒体自噬改变线粒体功能,进而影响宿主免疫炎症反应和细胞毒性,并通过监测生存率和肺组织病理学变化进一步确定线粒体自噬在小鼠铜绿体内感染模型中的作用。结果表明,铜绿引起小鼠腹腔巨噬细胞线粒体功能障碍,并通过线粒体自噬途径清除铜绿刺激引起的活性氧(ROS)累积,从而抑制铜绿引起的促炎性细胞因子分泌并增强细胞毒性。体内实验进一步确认线粒体自噬在铜绿体内感染中的作用。
Mice
;
Animals
;
Reactive Oxygen Species/metabolism*
;
Pseudomonas aeruginosa
;
Macrophages/metabolism*
;
Mitochondria
;
Cytokines/metabolism*
7.Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart.
Miaomiao ZHU ; Huamin LIANG ; Zhe ZHANG ; Hao JIANG ; Jingwen PU ; Xiaoyi HANG ; Qian ZHOU ; Jiacheng XIANG ; Ximiao HE
Frontiers of Medicine 2023;17(5):939-956
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Animals
;
Mice
;
Diploidy
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Cell Communication
;
Gene Expression Profiling
;
Mitochondria
;
Regeneration
;
Mammals/genetics*
8.Relationship between Notch signaling pathway and mitochondrial energy metabolism.
Qi SHEN ; Yufan YUAN ; Jinlan JIN
Chinese Critical Care Medicine 2023;35(12):1321-1326
Notch signaling pathway is a highly conserved signaling pathway in the process of evolution. It is composed of three parts: Notch receptor, ligand and effector molecules responsible for intracellular signal transduction. It plays an important role in cell proliferation, differentiation, development, migration, apoptosis and other processes, and has a regulatory effect on tissue homeostasis and homeostasis. Mitochondria are the sites of oxidative metabolism in eukaryotes, where sugars, fats and proteins are finally oxidized to release energy. In recent years, the regulation of Notch signaling pathway on mitochondrial energy metabolism has attracted more and more attention. A large number of data have shown that Notch signaling pathway has a significant effect on mitochondrial energy metabolism, but the relationship between Notch signaling pathway and mitochondrial energy metabolism needs to be specifically and systematically discussed. In this paper, the relationship between Notch signaling pathway and mitochondrial energy metabolism is reviewed, in order to improve the understanding of them and provide new ideas for the treatment of related diseases.
Signal Transduction/physiology*
;
Mitochondria
;
Receptors, Notch/metabolism*
;
Cell Differentiation/physiology*
;
Energy Metabolism
9.Overexpression of miR-431-5p impairs mitochondrial function and induces apoptosis in gastric cancer cells via the Bax/Bcl-2/caspase3 pathway.
Jiaming WU ; Zhongquan DENG ; Yi ZHU ; Guangjian DOU ; Jin LI ; Liyong HUANG
Journal of Southern Medical University 2023;43(4):537-543
OBJECTIVE:
To investigate the expression of microRNA miR-431-5p in gastric cancer (GC) tissues and its effects on apoptosis and mitochondrial function in GC cells.
METHODS:
The expression level of miR-431-5p in 50 clinical samples of GC tissues and paired adjacent tissues was detected using real-time fluorescence quantitative PCR, and its correlation with the clinicopathological features of the patients was analyzed. A cultured human GC cell line (MKN-45 cells) were transfected with a miR-431-5p mimic or a negative control sequence, and the cell proliferation, apoptosis, mitochondrial number, mitochondrial potential, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were detected using CCK-8 assay, flow cytometry, fluorescent probe label, or ATP detection kit. The changes in the expression levels of the apoptotic proteins in the cells were detected with Western blotting.
RESULTS:
The expression level of miR-431-5p was significantly lower in GC tissues than in the adjacent tissues (P < 0.001) and was significantly correlated with tumor differentiation (P=0.0227), T stage (P=0.0184), N stage (P=0.0005), TNM stage (P=0.0414) and vascular invasion (P=0.0107). In MKN-45 cells, overexpression of miR-431-5p obviously inhibited cell proliferation and induced cell apoptosis, causing also mitochondrial function impairment as shown by reduced mitochondrial number, lowered mitochondrial potential, increased mPTP opening, increased ROS production and reduced ATP content. Overexpression of miR-431-5p significantly downregulated the expression of Bcl-2 and increased the expressions of pro-apoptotic proteins p53, Bcl-2 and cleaved caspase-3 protein.
CONCLUSION
The expression of miR-431-5p is down-regulated in GC, which results in mitochondrial function impairment and promotes cell apoptosis by activating the Bax/Bcl-2/caspase3 signaling pathway, suggesting the potential role of miR-431-5p in targeted therapy for GC.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
MicroRNAs/metabolism*
;
Mitochondria/metabolism*
;
Mitochondrial Permeability Transition Pore
;
Reactive Oxygen Species
;
Stomach Neoplasms/pathology*

Result Analysis
Print
Save
E-mail