1.A homeopathic nosode, Hepatitis C 30 demonstrates anticancer effect against liver cancer cells in vitro by modulating telomerase and topoisomerase II activities as also by promoting apoptosis via intrinsic mitochondrial pathway.
Jesmin MONDAL ; Jayeeta DAS ; Rajesh SHAH ; Anisur Rahman KHUDA-BUKHSH
Journal of Integrative Medicine 2016;14(3):209-218
OBJECTIVEHomeopathic nosodes have seldom been scientifically validated for their anticancer effects. This study was conducted to examine if a recently developed hepatitis C nosode has demonstrable anticancer potential in cancer cells in vitro.
METHODSAnticancer effects of Hepatitis C 30C (Hep C 30), if any, were initially tested on three cancer cell lines, HepG2 (liver cancer), MCF-7 (breast cancer) and A549 (lung cancer) and one normal liver cell line WRL-68 cells and subsequently a more thorough study using further scientific protocols was undertaken on HepG2 cells (against WRL-68 cells as the normal control) as HepG2 cells showed better anticancer response than the other two. Three doses, one at 50% lethal dose (LD50) and the other two below LD50, were used on HepG2 cells subsequently. Protocols like apoptosis induction and its possible signaling mechanism were deployed using immunoblots of relevant signal proteins and confocal microscopy, with particular reference to telomerase and topoisomerase II (Top II) activities, two strong cancer biomarkers for their direct relationship with divisional activities of cells and DNAs.
RESULTSHep C 30 induced apoptosis, caused distorted cell morphology typical of apoptotic cells, increased reactive oxygen species generation and produced increased DNA nicks. Further it enhanced pro-apototic signal proteins like Bax, cytochrome c and inhibited anti-apoptotic signal proteins, Bcl-2, cytochrome c and caspase-3, changed mitochondrial membrane potential and caused externalization of phosphatidylserine. The drug also decreased expression of two cancer biomarkers, Top II and telomerase, consistent with its anticancer effect.
CONCLUSIONHep C 30 has demonstrable anticancer effects against liver cancer cells in vitro.
Antineoplastic Agents ; pharmacology ; Apoptosis ; drug effects ; Cell Survival ; drug effects ; DNA Topoisomerases, Type II ; metabolism ; Hep G2 Cells ; Hepacivirus ; Humans ; Liver Neoplasms ; drug therapy ; enzymology ; pathology ; Materia Medica ; Mitochondria ; drug effects ; physiology ; Telomerase ; metabolism
2.Saeng-Kankunbi-Tang () protects liver against oxidative damage through activation of ERK/Nrf2 pathway.
In Woo LEE ; Hee Yoon CHOI ; Ju-Hee LEE ; Sun-Dong PARK ; Seung Mo KIM ; Sae Kwang KU ; Rong-Jie ZHAO ; Sang Chan KIM ; Young Woo KIM ; Hong Sik CHOI
Chinese journal of integrative medicine 2016;22(8):619-628
OBJECTIVETo investigate the cytoprotective effects of Saeng-kankunbi-tang (, SKT), a herbal prescription consisting of Artemisia capillaris and Alisma canaliculatum, and its underlying mechanism involved.
METHODSIn mice, blood biochemistry and histopathology were assessed in carbon tetrachloride (CCl4)-induced oxidative hepatic injury in vivo. The animal groups included vehicle-treated control, CCl4, SKT 500 mg/(kg day) CCl4+SKT 200 or 500 mg/(kg day). In HepG2 cell, tert-butyl hydroperoxide (tBHP) induced severe oxidative stress and mitochondrial dysfunction in vitro. The cyto-protective effects of SKT were determined by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay, flfluorescence activated cell sorting analysis and western blotting.
RESULTSThe administration of SKT prevented liver damage induced by CCl4 in mice, by inhibition of hepatocyte degeneration and inflflammatory cell infifiltration as well as plasma parameters such as alanine aminotransferase (P<0.01). Moreover, treatment with tBHP induced hepatocyte death and cellular reactive oxygen species production in hepatocyte cell line. However, SKT pretreatment (30-300 μg/mL) reduced this cell death and oxidative stress (P<0.01). More importantly, SKT inhibited the ability of tBHP to induce changes in mitochondrial membrane transition in cell stained with rhodamine 123 P<0.01). Furthermore, treatment with SKT induced extracellular signal-regulated kinases-mediated nuclear factor erythroid-2-related factor 2 (Nrf2) activation as well as the expressions of heme oxygenase 1 and glutamate- cystein ligase catalytic, Nrf2 target genes.
CONCLUSIONSSKT has the ability to protect hepatocyte against oxidative stress and mitochondrial damage mediated by Nrf2 activation.
Animals ; Antioxidants ; pharmacology ; Carbon Tetrachloride ; Cell Death ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Hep G2 Cells ; Humans ; Liver ; drug effects ; enzymology ; pathology ; MAP Kinase Signaling System ; drug effects ; Mice, Inbred C57BL ; Mitochondria ; drug effects ; metabolism ; NF-E2-Related Factor 2 ; metabolism ; Oxidative Stress ; drug effects ; Peroxides ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; Reactive Oxygen Species ; metabolism
3.Mitochondrial activities of citrate synthase, carnitine palmitoyltransferase-1 and cytochrome C oxidase are increased during the apoptotic process in hepatocytes of a rat model of acute liver failure.
Liyan CHEN ; Baoshan YANG ; Li ZHOU ; Zhongping DUAN ; Wenjuan LIU ; Mei DING
Chinese Journal of Hepatology 2014;22(6):456-461
OBJECTIVETo determine the roles of mitochondrial apoptosis and energy metabolism in hepatocytes during the pathogenic process of acute renal failure (ALF) by assessing disease-related differential activities of several key mitochondrial enzymes, including citrate synthase (CS), carnitine palmitoyltransferase-1 (CPT-1) and cytochrome c oxidase (COX).
METHODSThirty-two male Sprague Dawley rats were given D-galactosamine followed by and lipopolysaccharide (LPS) to induce acute liver failure and sacrificed after 4 (4 h group), 8 (8 h group) 12 (12 h group) and 24 hours (24 h group) of treatment. Eight unmodeled rats served as controls. Effects related to apoptosis were evaluated by pathological analysis of hepatic tissues and TUNEL staining. Ultrastructural changes in mitochondria were assessed by electron microscopy. The activity and expression of CS, CPT-1 and COX were measured.
RESULTSHepatocyte apoptosis was present in the 4 h treatment group and was increased obviously in the 8 h treatment group. Hepatocyte necrosis was first observed in the 12 h treatment group and was significantly higher in the 24 h treatment group, with inflammatory cell invasion. Ultrastructural changes in mitochondria were present in the 4 h treatment group, and the 24 h treatment group showed mitochondria with completely destroyed outer membranes, which resulted in mitochondrial collapse. Activity and protein expression of CS, CPT-1 and COX were increased in the 4 h group (vs. controls), were at their peak in the 8 h group (CS:t =1.481, P less than 0.01; CPT-1:t =2.619, P less than 0.05; COX:t =1.014, P less than 0.01) and showed a decreasing trend in the 12 h group. In addition, the activities of CS, CPT-1 and COX were enhanced at the stage of hepatocyte apoptosis, suggesting that these enzymes were involved in the initiation and development of ALF.
CONCLUSIONEnergy metabolism plays an important role in hepatocyte apoptosis during ALF.
Animals ; Apoptosis ; Carnitine O-Palmitoyltransferase ; metabolism ; Citrate (si)-Synthase ; metabolism ; Disease Models, Animal ; Electron Transport Complex IV ; metabolism ; Hepatocytes ; cytology ; enzymology ; Liver Failure, Acute ; metabolism ; pathology ; Male ; Mitochondria ; ultrastructure ; Rats ; Rats, Sprague-Dawley
4.Intervention effect of aqueous fractions from Boschniakia rossica on hepatic oxidative stress in mice with liver injury induced by carbon tetrachloride.
Wen-Xi ZHAO ; Mei-Hua JIN ; Tian LI ; Yu-Jiao WANG ; Ji-Shu QUAN
China Journal of Chinese Materia Medica 2013;38(6):875-878
OBJECTIVETo investigate the intervention effect of aqueous fractions from Boschniakia rossica (BRAF) on hepatic oxidative stress in mice with liver injury induced by carbon tetrachloride (CCl4).
METHODThe experimental mice were randomly assigned into the normal control group, the model group, the silymarin (positive control) group, as well as high and low dose BRAF groups. Mice were treated intragastrically with silymarin or BRAF once every day for 7 days. At the end of the experiment, CCl4 was injected intraperitoneally into the mice to establish the acute liver injury model. The pathological changes was detected with hematoxylin and eosin (HE) staining, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), superoxide dismutase (SOD) , catalase (CAT), glutathione peroxidase (GPx), Na+ -K+ -ATPase, Ca2+ -Mg2+ -ATPase, and the contents of reduced glutathione (GSH) and malondialdehyde (MDA) were detected by the colorimetric method.
RESULTBRAF significantly reduced ALT, AST and ALP activities in serum, alleviated hepatic injury induced by CCl4, increased SOD, CAT, GPx and GSH levels in liver, and SOD, Na + -K + -ATPase and Ca2+ -Mg2 + -ATPase activities in liver mitochondria, and decreased the MDA content in liver and liver mitochondria.
CONCLUSIONBRAF reduces hepatic oxidative stress in mice with acute liver injury induced by CCl4, thereby showing the protective effect on mice with acute liver injury induced by CCl4.
Animals ; Carbon Tetrachloride ; toxicity ; Chemical and Drug Induced Liver Injury ; enzymology ; metabolism ; pathology ; Drugs, Chinese Herbal ; chemistry ; pharmacology ; Liver ; drug effects ; enzymology ; metabolism ; pathology ; Male ; Mice ; Mitochondria ; drug effects ; metabolism ; Orobanchaceae ; chemistry ; Oxidative Stress ; drug effects ; Solubility ; Water ; chemistry
5.Assessment of mitochondrial toxicity induced by zidovudine and adefovir dipivoxil in rats.
Bin ZHU ; Zhen-ni ZHU ; Jun-zhong WANG ; Shun-mei HUANG ; Xue-mei FENG ; An-yi LI ; Dong-liang YANG ; Bao-ju WANG
Chinese Journal of Hepatology 2012;20(10):794-797
OBJECTIVETo explore the mitochondrial toxicities induced by zidovudine (AZT) and adefovir dipivoxil (ADV) antiviral drugs using a rat model system.
METHODSTwelve healthy Sprague-Dawley rats were randomly divided into three equal groups and treated by oral gavage with zidovudine (125 mg/kg/day), adefovir (40 mg/kg/day), or saline (equal volume) for 28 days. The rats' body weights were measured once a week, and blood was collected every two weeks for blood and biochemical tests. All animals were sacrificed at the end of treatment, and liver, kidney, skeletal muscle, and cardiac muscle were collected by necropsy. Mitochondria were isolated from the respective tissue samples, and the activities of respiratory chain complexes were measured. DNA was purified from each sample and the mitochondrial DNA (mtDNA) content was monitored by quantitative real time PCR. Mitochondrial morphology was analyzed under electron microscope.
RESULTSNo significant adverse effects, including body weight loss, abnormal blood or biochemistry, were observed in rats treated with AZT or ADV. The activities of mitochondrial cytochrome c oxidase in liver and cardiac muscle were slightly decreased in rats treated with AZT (liver: 9.44+/-3.09 vs. 17.8+/-12.38, P?=?0.21; cardiac muscle: 32.74+/-5.52 vs. 24.74+/-20.59, P?=?0.28; kidney: 4.42+/-1.53 vs. 14.45+/-13.75, P?=?0.18; skeletal muscle: 33.75+/-8.74 vs. 40.04+/-2.49, P?=?0.45). The mtDNA content was significantly decreased in cardiac muscle of AZT-treated rats (cardiac muscle: 0.15+/-0.13 vs. 0.32+/-0.42, P?=?0.85). The morphology of mitochondria in liver, kidney, skeletal muscle, and cardiac muscle was significantly altered in the AZT-treated rats and included disappearance of the outer membrane, severely damaged structure, and swollen or completely absent cristae. No obvious effects were noted in the ADV- or saline-treated rats.
CONCLUSIONSignificant adverse effects related to mitochondrial toxicity were observed in rats treated with AZT. The slightly decreased mtDNA content in ADV-treated rats may suggest that this antiviral drug can also cause mitochondrial toxic effects.
Adenine ; adverse effects ; analogs & derivatives ; Animals ; DNA, Mitochondrial ; drug effects ; Electron Transport Complex IV ; metabolism ; Female ; Kidney ; enzymology ; Liver ; enzymology ; Mitochondria ; drug effects ; metabolism ; Mitochondria, Heart ; drug effects ; Mitochondria, Liver ; drug effects ; Mitochondria, Muscle ; drug effects ; Muscle, Skeletal ; enzymology ; Myocardium ; enzymology ; Organophosphonates ; adverse effects ; Rats ; Rats, Sprague-Dawley ; Zidovudine ; adverse effects
6.Protective effects of shaoganduogan on hepatocyte mitochondria in subacute liver injury rat induced by carbon tetrachloride.
Jun SONG ; Junning ZHAO ; Xiaodong WANG ; Ying DAI ; Zhiwen DENG ; Jinhai YI
China Journal of Chinese Materia Medica 2011;36(7):931-934
OBJECTIVETo study the protective effect of Shaoganduogan (SGDG) on serum transaminase, liver pathology and hepatocyte mitochondria in rat with subacute liver injury induced by carbon tetrachloride.
METHODSubacute liver injury of rats were induced by carbon tetrachloride, and cured by different doses of SGDG through intragastric administration. The activity of serum ALT, AST, liver pathology and ultrastructure, activity of ATPase, SOD and content of MDA of hepatocyte mitochondria were observed.
RESULTSGDG can remarkably reduce the transaminase, alleviate the degeneration and necrosis of liver cells ,enhance activity of Na+ -K+ ATPase, Ca2+ ATPase, SOD, reduce content of MDA of mitochondria, alleviate ultrastructure change of mitochondria, reduce section area, perimeter equivalent diameter and average optical density perimeter of liver cells.
CONCLUSIONSGDG has obvious effect of liver protection, the mechanisms are related with alleviating mitochondria injury.
Animals ; Carbon Tetrachloride ; adverse effects ; Chemical and Drug Induced Liver Injury ; pathology ; Drugs, Chinese Herbal ; pharmacology ; Hepatocytes ; drug effects ; pathology ; Male ; Malondialdehyde ; metabolism ; Mitochondria ; drug effects ; enzymology ; metabolism ; ultrastructure ; Rats ; Rats, Sprague-Dawley
7.Research on mechanism of energy metabolism disorders of rat's hepatoxicity induced by saikosaponins.
Rongmei WANG ; Lili LV ; Wei HUANG ; Youyi HUANG ; Rong SUN
China Journal of Chinese Materia Medica 2011;36(18):2557-2561
OBJECTIVETo study the influence of saikosaponins on function of rats' liver mitochondria, its liver damage mechanism was discussed.
METHODAdministrating alcohol eluent of saikosaponins of different dose for 15 days to rats, and the high, middle and low lose-group are separately 300, 150, 50 mg x kg(-1) caculated by total saikosaponins. The liver index in serum, the respiratory function of liver mitochondria,the content of ATP and the activity of ATP enzyme were detected. The weight of heart, liver, spleen, lung, renal of rats were precisionly weighed, and the ratio of organ to body were calculated. The histopathologic examination of hepatic tissue were examined.
RESULTAlcohol eluent of saikosaponins of different dose can induce apparent decrease of PCR, P/O value, respiratory oxygen consumption and the activity of ATP enzyme; the level of ALT, AST and ALB in serum increased; the liver weight and the ratio of liver to body increaseed, and the hepatic tissue damage is obvious in the histopathologic examination of hepatic tissue. The above-mentioned changes gradually aggravates with dose increasing, and it is obviously discrepancy compared with control group.
CONCLUSIONAlcohol eluent of saikosaponins can induce liver damage by restraining the respiratory function of mitochondria and effecting liver's energy metabolism. Other hepatoxicity mechanism still need to be discussed.
Animals ; Antimetabolites ; toxicity ; Chemical and Drug Induced Liver Injury ; metabolism ; pathology ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Electron Transport ; drug effects ; Energy Metabolism ; drug effects ; Female ; Liver ; enzymology ; pathology ; Male ; Mitochondria, Liver ; drug effects ; metabolism ; Oleanolic Acid ; analogs & derivatives ; toxicity ; Organ Size ; drug effects ; Rats ; Saponins ; toxicity
8.Study on norcantharidin-induced apoptosis in SMMC-7721 cells through mitochondrial pathways.
Xian-qian LI ; Shi-he SHAO ; Gui-lian FU ; Xiao-hong HAN ; Hong GAO
Chinese journal of integrative medicine 2010;16(5):448-452
OBJECTIVETo investigate the mechanism of norcantharidin (NCTD)-induced SMMC-7721 hepatoma cell apoptosis.
METHODSSMMC-7721 cell growth inhibition was measured by the MTT method. Apoptosis was detected by Annexin V/propidium iodide staining. The mitochondrial membrane potential was measured by flow cytometry. Western blot analysis was used to evaluate the level of cytochrome c, caspase-3, AIF, Bcl-2 and Bax expression.
RESULTSNCTD inhibited SMMC-7721 cell growth in a time- and dose-dependent manner. The cells treated with NCTD showed the loss of mitochondrial membrane potential. The activities of caspase-3, cytochrome c, AIF, and Bax were up-regulated after NCTD treatment at different doses. The expression of Bcl-2 was decreased after treatment with NCTD.
CONCLUSIONSNCTD could induce SMMC-7721 cell apoptosis. The activation of the mitochondrial pathway was involved in the process of NCTD-induced SMMC-7721 cell apoptosis.
Apoptosis ; drug effects ; Apoptosis Inducing Factor ; metabolism ; Blotting, Western ; Bridged Bicyclo Compounds, Heterocyclic ; pharmacology ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cytochromes c ; metabolism ; Flow Cytometry ; Humans ; Liver Neoplasms ; enzymology ; metabolism ; pathology ; Membrane Potentials ; drug effects ; Mitochondria ; drug effects ; metabolism ; bcl-2-Associated X Protein ; metabolism
9.Effects of seawater immersion on the functions of mitochondria of myocardium and hepatocyte in hemorrhagic shock rats.
Song-min LU ; Jian-cang LIU ; Cheng-he SHI ; Ping LI ; Qing-jun LU
Chinese Journal of Traumatology 2006;9(1):38-42
OBJECTIVETo investigate the effects of seawater immersion on the function of myocardium and hepatocyte mitochondria in experimental hemorrhagic shock rats.
METHODSTwenty-four male Wistar rats were divided into three groups (n=8 in each group): control group, HSL group (hemorrhagic shock group on land) and HSS group (hemorrhagic shock group in seawater). The hemodynamic parameters, activities of H(+)-ATPase (adenosinetriphosphatase), succinate dehydrogenase (SDH) and Ca(2+)-Mg(2+)-ATPase, the calcium contents in myocardium and hepatocyte mitochondria were measured and the changes of proton translocation across the inner mitochondrial membrane were analyzed.
RESULTSThe hemodynamic indexes and the activities of H+-ATPase, SDH, Ca(2+)-Mg(2+)-ATPase in HSS group were significantly lower than those in control group and HSL group (P<0.05). In HSS group the calcium levels in tissue and mitochondria of myocardium and hepatocyte were elevated significantly compared with control group and HSL group (P<0.05). There was no significant difference in proton translocation among three groups.
CONCLUSIONSThis investigation demonstrates that seawater immersion can aggravate the conditions of hemorrhagic shock rats.
Animals ; Calcium ; metabolism ; Immersion ; Male ; Mitochondria, Heart ; enzymology ; Mitochondria, Liver ; enzymology ; Proton-Translocating ATPases ; metabolism ; Random Allocation ; Rats ; Rats, Wistar ; Seawater ; Shock, Hemorrhagic ; enzymology ; physiopathology
10.Effects of Angelica sinensis polysaccharides on hepatic drug metabolism enzymes activities in mice.
Xue-yan XIA ; Ren-xiu PENG ; Rui KONG ; Zhe-qiong YANG ; Xiao CHEN
China Journal of Chinese Materia Medica 2003;28(2):149-152
OBJECTIVETo study the effects of Angelica sinensis Polysaccharides (ASP) on the hepatic drug metabolism enzymes activities in normal mice and those prednisolone (PSL)-induced liver injury.
METHODThe activities of phase II enzymes (GSH-related enzymes) and cytochrome P450 enzymes were measured by biochemical method.
RESULTASP increased the activities of glutathione S-transferase in liver microsomes and mitochondria. The cytochrome P450 content, NADPH-cytochrome c reductase, aminopyrine N-demethylase, and aniline hydroxylase activities in liver microsomes were also increased. PSL significantly increased serum ALT levels, and decreased the liver mitochondrial glutathione content. At the same time, other enzymes activities were all increased. When mice were treated with ASP 2.0 g.kg-1, the PSL-induced changes on cytochrome P450 enzymes, glutathione S-transferase, and GSH content were restored.
CONCLUSIONASP can modulate the activities of drug metabolism enzymes.
Aminopyrine N-Demethylase ; metabolism ; Angelica sinensis ; chemistry ; Aniline Hydroxylase ; metabolism ; Animals ; Chemical and Drug Induced Liver Injury ; enzymology ; etiology ; Cytochrome P-450 Enzyme System ; metabolism ; Glutathione Transferase ; metabolism ; Male ; Mice ; Microsomes, Liver ; enzymology ; Mitochondria, Liver ; enzymology ; NADPH-Ferrihemoprotein Reductase ; metabolism ; Plants, Medicinal ; chemistry ; Polysaccharides ; isolation & purification ; pharmacology ; Prednisolone

Result Analysis
Print
Save
E-mail