1.Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice.
Lifan ZHANG ; Duyan GENG ; Guizhi XU ; Hongxia AN
Journal of Biomedical Engineering 2025;42(4):707-715
Alzheimer's disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group ( P < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved ( P < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.
Animals
;
Heart Rate/physiology*
;
Mice
;
Alzheimer Disease/therapy*
;
Mice, Transgenic
;
Mitochondrial Dynamics/radiation effects*
;
Magnetic Field Therapy/methods*
;
Magnetic Fields
;
Disease Models, Animal
;
Mitochondria
;
Male
;
Maze Learning
;
Cognition
;
Dementia/therapy*
2.Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m6A modification of calsequestrin 2 in diabetic cardiomyopathy.
Xiaohan LI ; Ling LIU ; Han LOU ; Xinxin DONG ; Shengxin HAO ; Zeqi SUN ; Zijia DOU ; Huimin LI ; Wenjie ZHAO ; Xiuxiu SUN ; Xin LIU ; Yong ZHANG ; Baofeng YANG
Frontiers of Medicine 2025;19(2):329-346
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.
Animals
;
Diabetic Cardiomyopathies/pathology*
;
RNA, Long Noncoding/genetics*
;
Myocytes, Cardiac/metabolism*
;
Mice
;
Calsequestrin/genetics*
;
Calcium/metabolism*
;
Male
;
Sarcoplasmic Reticulum/metabolism*
;
Methyltransferases/metabolism*
;
Mice, Inbred C57BL
;
Mitochondria, Heart/metabolism*
;
Disease Models, Animal
;
Mitochondria/metabolism*
3.Cardiac β-adrenergic receptor regulation of mitochondrial function in heart failure.
Ai-Ming LIU ; Wen-Li XU ; Han XIAO ; Er-Dan DONG
Acta Physiologica Sinica 2024;76(6):865-880
Heart failure is characterized by abnormal β-adrenergic receptor (β-AR) activation and mitochondrial dysfunction. In heart failure, overactivation of β-AR mediates key pathological processes in cardiomyocytes, including oxidative stress, calcium overload and metabolic abnormalities, which subsequently lead to inflammation, myocardial apoptosis and necrosis. Mitochondria are the core organelles for energy metabolism, and also play a vital role in calcium homeostasis, redox balance and signaling transduction. Moderate β-AR activation is conducive to maintaining mitochondrial homeostasis and physiological cardiomyocyte function. However, β-AR overactivation in heart failure disrupts mitochondrial function through multiple mechanisms. Therefore, our review aims to elucidate how β-AR regulates mitochondrial function, particularly under sympathetic stress, impacting oxidative stress, apoptosis, necrosis, and metabolic imbalance. By describing these mechanisms, we seek to propose new insights and therapeutic targets for the prevention and treatment of heart failure.
Heart Failure/physiopathology*
;
Humans
;
Receptors, Adrenergic, beta/physiology*
;
Mitochondria, Heart/physiology*
;
Animals
;
Oxidative Stress/physiology*
;
Myocytes, Cardiac/physiology*
;
Apoptosis/physiology*
;
Signal Transduction/physiology*
4.Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart.
Miaomiao ZHU ; Huamin LIANG ; Zhe ZHANG ; Hao JIANG ; Jingwen PU ; Xiaoyi HANG ; Qian ZHOU ; Jiacheng XIANG ; Ximiao HE
Frontiers of Medicine 2023;17(5):939-956
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Animals
;
Mice
;
Diploidy
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Cell Communication
;
Gene Expression Profiling
;
Mitochondria
;
Regeneration
;
Mammals/genetics*
5.Resveratrol pretreatment improves mitochondrial function and alleviates myocardial ischemia-reperfusion injury by up-regulating mi R-20b-5p to inhibit STIM2.
Jing LI ; Qun-Jun DUAN ; Jian SHEN
China Journal of Chinese Materia Medica 2022;47(18):4987-4995
This study aimed to explore the mechanism of resveratrol(RES) pretreatment in improving mitochondrial function and alleviating myocardial ischemia-reperfusion(IR) injury by inhibiting stromal interaction molecule 2(STIM2) through microRNA-20 b-5 p(miR-20 b-5 p). Ninety rats were randomly assigned into sham group, IR group, IR+RES(50 mg·kg~(-1) RES) group, IR+RES+antagomir NC(50 mg·kg~(-1) RES+80 mg·kg~(-1) antagomir NC) group, and IR+RES+miR-20 b-5 p antagomir(50 mg·kg~(-1) RES+80 mg·kg~(-1) miR-20 b-5 p antagomir) group, with 18 rats/group. The IR rat model was established by ligation of the left anterior descending coronary artery. Two weeks before the operation, rats in the IR+RES group were intraperitoneally injected with 50 mg·kg~(-1) RES, and those in the sham and IR groups were injected with the same dose of normal saline, once a day. Ultrasonic instrument was used to detect the left ventricular internal diameter at end-diastole(LVIDd) and left ventricular internal diameter at end-systole(LVIDs) of rats in each group. The 2,3,5-triphenyte-trazoliumchloride(TTC) method and hematoxylin-eosin(HE) staining were employed to detect the myocardial infarction area and histopathology, respectively. Real-time quantitative PCR(qRT-PCR) was carried out to detect the expression of miR-20 b-5 p in myocardial tissue. Oxygen glucose deprivation/reoxygenation(OGD/R) was performed to establish an OGD/R model of H9 c2 cardiomyocytes. CCK-8 assay was employed to detect H9 c2 cell viability. H9 c2 cells were assigned into the control group, OGD/R group, OGD/R+RES group(25 μmol·L~(-1)), OGD/R+RES+inhibitor NC group, OGD/R+RES+miR-20 b-5 p inhibitor group, mimic NC group, miR-20 b-5 p mimic group, inhibitor NC group, and miR-20 b-5 p inhibitor group. Flow cytometry was employed to detect cell apoptosis. Western blot was employed to detect the expression of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved-cysteine proteinase 3(cleaved-caspase-3), and STIM2 in cells. The mitochondrial membrane potential(MMP) assay kit, reactive oxygen species(ROS) assay kit, and adenosine triphosphate(ATP) assay kit were used to detect the MMP, ROS, and ATP levels, respectively. Dual luciferase reporter gene assay was adopted to verify the targeting relationship between miR-20 b-5 p and STIM2. Compared with the sham group, the modeling of IR increased the myocardial infarction area, LVIDd, LVIDs, and myocardial pathology and down-regulated the expression of miR-20 b-5 p(P<0.05). These changes were alleviated in the IR+RES group(P<0.05). The IR+RES+miR-20 b-5 p antagomir group had higher myocardial infarction area, LVIDd, LVIDs, and myocardial pathology and lower expression of miR-20 b-5 p than the IR+RES group(P<0.05). The OGD/R group had lower viability of H9 c2 cells than the control group(P<0.05) and the OGD/R+RES groups(25, 50, and 100 μmol·L~(-1))(P<0.05). Additionally, the OGD/R group had higher H9 c2 cell apoptosis rate, protein levels of Bax and cleaved caspase-3, and ROS level and lower Bcl-2 protein, MMP, and ATP levels than the control group(P<0.05) and the OGD/R+RES group(P<0.05). The OGD/R+RES+miR-20 b-5 p inhibitor group had higher H9 c2 cell apoptosis rate, protein levels of Bax and cleaved-caspase 3, and ROS level and lower Bcl-2 protein, MMP, and ATP levels than the OGD/R+RES group(P<0.05). miR-20 b-5 p had a targeting relationship with STIM2. The expression of STIM2 was lower in the miR-20 b-5 p mimic group than in the mimic NC group(P<0.05) and lower in the inhibitor NC group than in the miR-20 b-5 p inhibitor group(P<0.05). RES pretreatment can inhibit the expression of STIM2 by promoting the expression of miR-20 b-5 p, thereby improving the function of mitochondria and alleviating myocardial IR damage.
Animals
;
Rats
;
Adenosine Triphosphate
;
Antagomirs/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Glucose/metabolism*
;
MicroRNAs/metabolism*
;
Mitochondria, Heart/drug effects*
;
Myocardial Infarction/drug therapy*
;
Myocardial Reperfusion Injury/drug therapy*
;
Myocytes, Cardiac
;
Oxygen/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism*
;
Resveratrol/therapeutic use*
;
Stromal Interaction Molecule 2/metabolism*
6.Mouse strain-specific responses of mitochondrial respiratory function and cardiac hypertrophy to isoproterenol treatment.
Shuang-Ling LI ; Shun WANG ; Yuan HE ; Di ZHENG ; Jian LYU ; Ning-Ning GUO ; Ying-Ying GUO ; Li-Li LI ; Ming-Xia FAN ; Zhi-Hua WANG
Acta Physiologica Sinica 2021;73(3):459-470
Cardiac hypertrophy is a common pathological process of various cardiovascular diseases and eventually develops into heart failure. This paper was aimed to study the different pathological characteristics exhibited by different mouse strains after hypertrophy stimulation. Two mouse strains, A/J and FVB/nJ, were treated with isoproterenol (ISO) by osmotic pump to induce cardiac hypertrophy. Echocardiography was performed to monitor heart morphology and function. Mitochondria were isolated from hearts in each group, and oxidative phosphorylation function was assayed in vitro. The results showed that both strains showed a compensatory enhancement of heart contractile function after 1-week ISO treatment. The A/J mice, but not the FVB/nJ mice, developed significant cardiac hypertrophy after 3-week ISO treatment as evidenced by increases in left ventricular posterior wall thickness, heart weight/body weight ratio, cross sectional area of cardiomyocytes and cardiac hypertrophic markers. Interestingly, the heart from A/J mice contained higher mitochondrial DNA copy number compared with that from FVB/nJ mice. Functionally, the mitochondria from A/J mice displayed faster O
Animals
;
Cardiomegaly/chemically induced*
;
Heart Failure
;
Isoproterenol/toxicity*
;
Mice
;
Mitochondria
;
Myocytes, Cardiac/metabolism*
7.Research progress of mitochondria as target of traditional Chinese medicines in treatment of heart failure.
Kai HUANG ; Jia-Ming GAO ; Shuang HE ; Yan ZHU
China Journal of Chinese Materia Medica 2020;45(9):2082-2090
As the final destination of various cardiovascular abnormalities, heart failure is one of the diseases with the highest morbidity and mortality in the world. Due to its complicated pathogenesis, people urgently need to find new targets and effective treatment. Imbalance in myocardial energy metabolism, an important molecular biological basis for heart failure, affects the contractile and diastolic functions of the heart. As the main source of energy synthesis in cardiomyocytes and an important participant in various signaling pathways, mitochondria plays an indispensable role in the process of cell survival and death and has been considered as a critical target for the treatment of heart failure. Traditional Chinese medicine has a great effect on the treatment of heart failure through multi-components, multi-targets, and multi-channels. In recent years, more and more researches regard mitochondria as the target of traditional Chinese medicine in the treatment of heart failure, and have achieved significant results in improving mitochondrial function, increasing energy metabolism and energy supplement for cardiomyocytes, and resisting against oxidative stress. In this article, researches on the regulation of mitochondria in the treatment of heart failure by traditional Chinese medicine are reviewed from four aspects: mitochondrial biogenesis; mitochondrial electron transport chain and reactive oxygen species(ROS) production; metabolic substrates and metabolic enzymes; and calcium ion transport in the mitochondria. It provides a basis for further research and clinical application in the future.
Heart Failure
;
Humans
;
Medicine, Chinese Traditional
;
Mitochondria
;
Oxidative Stress
;
Reactive Oxygen Species
8.Mitochondrial Quality Control in the Heart: New Drug Targets for Cardiovascular Disease
Chang Myung OH ; Dongryeol RYU ; Sungsoo CHO ; Yangsoo JANG
Korean Circulation Journal 2020;50(5):395-405
Despite considerable efforts to prevent and treat cardiovascular disease (CVD), it has become the leading cause of death worldwide. Cardiac mitochondria are crucial cell organelles responsible for creating energy-rich ATP and mitochondrial dysfunction is the root cause for developing heart failure. Therefore, maintenance of mitochondrial quality control (MQC) is an essential process for cardiovascular homeostasis and cardiac health. In this review, we describe the major mechanisms of MQC system, such as mitochondrial unfolded protein response and mitophagy. Moreover, we describe the results of MQC failure in cardiac mitochondria. Furthermore, we discuss the prospects of 2 drug candidates, urolithin A and spermidine, for restoring mitochondrial homeostasis to treat CVD.
Adenosine Triphosphate
;
Cardiovascular Diseases
;
Cause of Death
;
Heart Failure
;
Heart
;
Homeostasis
;
Mitochondria
;
Mitochondrial Degradation
;
Organelles
;
Quality Control
;
Spermidine
;
Unfolded Protein Response
9.Salvianolic Acid A Protects Neonatal Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Injury by Preserving Mitochondrial Function and Activating Akt/GSK-3β Signals.
Xue-Li LI ; Ji-Ping FAN ; Jian-Xun LIU ; Li-Na LIANG
Chinese journal of integrative medicine 2019;25(1):23-30
OBJECTIVE:
To investigate the effects of salvianolic acid A (SAA) on cardiomyocyte apoptosis and mitochondrial dysfunction in response to hypoxia/reoxygenation (H/R) injury and to determine whether the Akt signaling pathway might play a role.
METHODS:
An in vitro model of H/R injury was used to study outcomes on primary cultured neonatal rat cardiomyocytes. The cardiomyocytes were treated with 12.5, 25, 50 μg/mL SAA at the beginning of hypoxia and reoxygenation, respectively. Adenosine triphospate (ATP) and reactive oxygen species (ROS) levels were assayed. Cell apoptosis was evaluated by flow cytometry and the expression of cleaved-caspase 3, Bax and Bcl-2 were detected by Western blotting. The effects of SAA on mitochondrial dysfunction were examined by determining the mitochondrial membrane potential (△Ψm) and mitochondrial permeability transition pore (mPTP), followed by the phosphorylation of Akt (p-Akt) and GSK-3β (p-GSK-3β), which were measured by Western blotting.
RESULTS:
SAA significantly preserved ATP levels and reduced ROS production. Importantly, SAA markedly reduced the number of apoptotic cells and decreased cleaved-caspase 3 expression levels, while also reducing the ratio of Bax/Bcl-2. Furthermore, SAA prevented the loss of △Ψm and inhibited the activation of mPTP. Western blotting experiments further revealed that SAA significantly increased the expression of p-Akt and p-GSK-3β, and the increase in p-GSK-3β expression was attenuated after inhibition of the Akt signaling pathway with LY294002.
CONCLUSION
SAA has a protective effect on cardiomyocyte H/R injury; the underlying mechanism may be related to the preservation of mitochondrial function and the activation of the Akt/GSK-3β signaling pathway.
Adenosine Triphosphate
;
analysis
;
Animals
;
Animals, Newborn
;
Caffeic Acids
;
pharmacology
;
Cell Hypoxia
;
Cells, Cultured
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Lactates
;
pharmacology
;
Mitochondria, Heart
;
drug effects
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
drug effects
;
Myocytes, Cardiac
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
;
physiology
10.Dual role of polyamines in heart ischemia/reperfusion injury through regulation of mitochondrial permeability transition pore.
Hui-Ying CHEN ; Xiao-Li JIA ; Shu-Qin ZHAO ; Wei-Hong ZHENG ; Zhi-Gang MEI ; Hong-Wei YANG ; Shi-Zhong ZHANG
Acta Physiologica Sinica 2019;71(5):681-688
Polyamines (putrescine, spermidine, and spermine) are essential polycations that play important roles in various physiological and pathophysiological processes in mammalian cells. The study was to investigate their role in cardioprotection against ischemia/reperfusion (I/R) injury and the underlying mechanism. Isolated hearts from male Sprague-Dawley rats were Langendorff-perfused and cardiac I/R was achieved by 30 min of global ischemia followed by 120 min of reperfusion. Different concentrations of polyamines (0.1, 1, 10, and 15 μmol/L of putrescine, spermidine, and spermine), cyclosporin A (0.2 μmol/L), or atractyloside (20 μmol/L) were given 10 min before the onset of reperfusion. The hemodynamics were monitored; the lactate dehydrogenase (LDH) levels in the coronary effluent were measured spectrophotometrically; infarct size was determined by the 2,3,5-triphenyltetrazolium chloride staining method; and mitochondrial permeability transition pore (MPTP) opening was determined spectrophotometrically by the Ca-induced swelling of isolated cardiac mitochondria. The results showed that compared to I/R alone, 0.1 and 1 μmol/L polyamines treatment improved heart function, reduced LDH release, decreased infarct size, and these effects were inhibited by atractyloside (MPTP activator). In isolated mitochondria from normal rats, 0.1 and 1 μmol/L polyamines treatment inhibited MPTP opening. However, 10 and 15 μmol/L polyamines treatment had the opposite effects, and these effects were inhibited by cyclosporin A (MPTP inhibitor). Our findings showed that polyamines may have either protective or damaging effects on hearts suffering from I/R by inhibiting or activating MPTP opening.
Animals
;
Cyclosporine
;
pharmacology
;
Male
;
Mitochondria, Heart
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocardial Reperfusion Injury
;
physiopathology
;
Polyamines
;
metabolism
;
Rats
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail