1.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
2.Mechanism of in Vitro and in vivo Models of Osteoporosis Regulation by Active Ingredients of Traditional Chinese Medicine: A Review
Ming YANG ; Jinji WANG ; Xuefeng ZHUANG ; Xiaolei FANG ; Zhijie ZHU ; Huiwei BAO ; Lijing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):281-289
Osteoporosis is a common bone disease, whose incidence is still on the rise, posing great challenges to patients and society. This review mainly studies the pathogenesis of osteoporosis from the aspects of oxidative stress, inflammatory response, and glucolipotoxicity-induced injury and clarifies the efficacy and mechanism of some active ingredients of traditional Chinese medicine against osteoporosis through the integration of in vitro and in vivo experiments. The experimental results suggest that some active ingredients can improve bone resorption markers and maintain bone homeostasis by modulating inflammation, oxidative stress, etc. These active ingredients regulate osteoporosis through the receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL) pathway, osteoprotegerin (OPG) pathway, Wnt/β-catenin pathway, NF-κB pathway, mitogen-activated protein kinase (MAPK) pathway, adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and oxidative stress pathway. This review provides ideas for the progress of the prevention and treatment of osteoporosis with the active ingredients of traditional Chinese medicine, aiming to provide new potential lead compounds and reference for the development of innovative drugs and clinical therapy for the treatment of osteoporosis.
3.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor
4.The Refinement and Innovation of The UV Cross-linking and Immunoprecipitation
Jia-Min ZHAO ; Cheng-Jiang LU ; Ming YANG ; Nashun BUHE ; Gang WANG
Progress in Biochemistry and Biophysics 2025;52(4):1036-1052
RNA-binding proteins (RBPs) are ubiquitous components within cells, fulfilling essential functions in a myriad of biological processes. These proteins interact with RNA molecules to regulate gene expression at various levels, including transcription, splicing, transport, localization, translation, and degradation. Understanding the intricate network of RBP-RNA interactions is crucial for deciphering the complex regulatory mechanisms that govern cellular function and organismal development. Ultravidet (UV) cross-linking and immunoprecipitation (CLIP) stands out as a powerful approach designed to map the precise locations where RBPs bind to RNA. By using UV light to create covalent bonds between proteins and RNA, followed by immunoprecipitation to isolate the protein-RNA complexes, researchers can identify the direct targets of specific RBPs. The advent of high-throughput sequencing technologies has revolutionized CLIP, enabling the identification of not only the types but also the exact sequences of RNA bound by RBPs on a genome-wide scale. The evolution of CLIP has led to the development of specialized variants, each with unique features that address specific challenges and expand the scope of what can be studied. High-throughput sequencing CLIP (HITS-CLIP) was one of the first advancements, significantly increasing the throughput and resolution of RNA-protein interaction mapping. Photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) introduced the use of photoactivatable ribonucleosides to enhance cross-linking efficiency and specificity, reducing background noise and improving the detection of low-abundance RNA-protein interactions. Individual-nucleotide resolution CLIP (iCLIP) further refined the technique, achieving unprecedented precision by resolving individual nucleotides involved in RBP binding, which is particularly valuable for studying the fine details of RNA structure and function. Despite the remarkable progress, there remains room for improvement in CLIP technology. Researchers continue to seek methods to increase sensitivity, reduce technical variability, and improve the reproducibility of results. Advances in sample preparation, data analysis algorithms, and computational tools are critical for addressing these challenges. Moreover, the application of CLIP to more diverse biological systems, including non-model organisms and clinical samples, requires the development of tailored protocols and the optimization of existing ones. Looking forward, the field of RNA biology is poised to benefit greatly from ongoing innovations in CLIP technology. The exploration of non-canonical RNA-protein interactions, such as those involving long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), promises to reveal new layers of cellular regulation and may lead to the discovery of novel therapeutic targets. Furthermore, integrating CLIP data with other omics approaches, such as proteomics and metabolomics, will provide a more comprehensive understanding of the dynamic interplay between RNA and its binding partners within the cell. In conclusion, the continuous refinement and expansion of CLIP techniques have not only deepened our knowledge of RNA biology but have also opened up new avenues for investigating the molecular underpinnings of health and disease. As the technology matures, it is expected to play an increasingly pivotal role in both basic and applied research, contributing to the advancement of medical science and biotechnology.
5.Surveillance results of common diseases among primary and secondary school students in Yichang City in 2019 - 2022
Yi LIANG ; Zaoxia WANG ; Chi HU ; Xiaoyan MING ; Man XIAO ; Qian WU ; Zhongcheng YANG
Journal of Public Health and Preventive Medicine 2025;36(4):98-101
Objective To investigate the prevalence of common diseases among primary and secondary school students in Yichang City from 2019 to 2022, and to provide a scientific basis for formulating effective intervention measures in the future. Methods By random cluster sampling , 7 schools in urban areas and 5 schools in suburban counties were selected to screen common diseases such as myopia, dental caries, obesity and abnormal spinal curvature. Descriptive epidemiological methods were employed for statistical analysis. Results A total of 17 023 primary and secondary school students were screened from 2019 to 2022. The overall detection rate of common diseases from high to low was myopia (54.12%), caries (36.75%), overweight (15.17%), obesity (11.88%), malnutrition (5.80%), and abnormal spinal curvature (3.49%). The detection rates of myopia and abnormal curvature of the spine showed an increasing trend with years and school stages, while the detection rates of malnutrition and dental caries showed a decreasing trend with years and school stages. The detection rates of overweight and obesity showed no trend difference with years, and the detection rates of obesity showed a decreasing trend with school stages. The rates of myopia, overweight and obesity were higher in urban areas than those in suburban counties, and the rate of dental caries was higher in suburban counties than that in urban areas. The prevalence of overweight, obesity, and malnutrition in boys was higher than that in girls. The prevalence of myopia and dental caries in girls was higher than that in boys. The above differences were statistically significant (all P<0.05). Conclusion Myopia, dental caries, obesity, and abnormal curvature of the spine are the current focus of the prevention and treatment of common diseases in students. There are great differences between different regions, school stages, and genders. The “tripartite linkage” of schools, families, and communities should be achieved with the joint efforts of the education and health departments to actively take targeted intervention measures to reduce the prevalence.
6.Cancer therapy-related interstitial lung disease.
Chengzhi ZHOU ; Haiyi DENG ; Yilin YANG ; Fei WANG ; Xinqing LIN ; Ming LIU ; Xiaohong XIE ; Tao LUAN ; Nanshan ZHONG
Chinese Medical Journal 2025;138(3):264-277
With the increasing utilization of cancer therapy, the incidence of lung injury associated with these treatments continues to rise. The recognition of pulmonary toxicity related to cancer therapy has become increasingly critical, for which interstitial lung disease (ILD) is a common cause of mortality. Cancer therapy-related ILD (CT-ILD) can result from a variety of treatments including chemotherapy, targeted therapy, immune checkpoint inhibitors, antibody-drug conjugates, and radiotherapy. CT-ILD may progress rapidly and even be life-threatening; therefore, prompt diagnosis and timely treatment are crucial for effective management. This review aims to provide valuable information on the risk factors associated with CT-ILD; elucidate its underlying mechanisms; discuss its clinical features, imaging, and histological manifestations; and emphasize the clinical-related views of its diagnosis. In addition, this review provides an overview of grading, typing, and staging treatment strategies used for the management of CT-ILD.
Humans
;
Lung Diseases, Interstitial/diagnosis*
;
Neoplasms/therapy*
;
Risk Factors
;
Immune Checkpoint Inhibitors/adverse effects*
;
Antineoplastic Agents/therapeutic use*
10.Safety and efficacy of human umbilical cord-derived mesenchymal stem cells in COVID-19 patients: A real-world observation.
Siyu WANG ; Tao YANG ; Tiantian LI ; Lei SHI ; Ruonan XU ; Chao ZHANG ; Zerui WANG ; Ziying ZHANG ; Ming SHI ; Zhe XU ; Fu-Sheng WANG
Chinese Medical Journal 2025;138(22):2984-2992
BACKGROUND:
The effects of human umbilical cord-derived mesenchymal stem cell (UC-MSC) treatment on coronavirus disease 2019 (COVID-19) patients have been preliminarily characterized. However, real-world data on the safety and efficacy of intravenous transfusions of MSCs in hospitalized COVID-19 patients at the convalescent stage remain to be reported.
METHODS:
This was a single-arm, multicenter, real-word study in which a contemporaneous external control was included as the control group. Besides, severe and critical COVID-19 patients were considered together as the severe group, given the small number of critical patients. For a total of 110 patients, 21 moderate patients and 31 severe patients were enrolled in the MSC treatment group, while 26 moderate patients and 32 severe patients were enrolled in the control group. All patients received standard treatment. The MSC treatment patients additionally received intravenous infusions of MSCs at a dose of 4 × 10 7 cells on days 0, 3, and 6, respectively. The clinical outcomes, including adverse events (AEs), lung lesion proportion on chest computed tomography, pulmonary function, 6-min walking distance (6-MWD), clinical symptoms, and laboratory parameters, were measured on days 28, 90, 180, 270, and 360 during the follow-up visits.
RESULTS:
In patients with moderate COVID-19, MSC treatment improved pulmonary function parameters, including forced expiratory volume in the first second (FEV1) and maximum forced vital capacity (VCmax) on days 28 (FEV1, 2.75 [2.35, 3.23] vs . 2.11 [1.96, 2.35], P = 0.008; VCmax, 2.92 [2.55, 3.60] vs . 2.47 [2.18, 2.68], P = 0.041), 90 (FEV1, 2.93 [2.63, 3.27] vs . 2.38 [2.24, 2.63], P = 0.017; VCmax, 3.52 [3.02, 3.80] vs . 2.59 [2.45, 3.15], P = 0.017), and 360 (FEV1, 2.91 [2.75, 3.18] vs . 2.30 [2.16, 2.70], P = 0.019; VCmax,3.61 [3.35, 3.97] vs . 2.69 [2.56, 3.23], P = 0.036) compared with the controls. In addition, in severe patients, MSC treatment notably reduced the proportion of ground-glass lesions in the whole lung volume on day 90 ( P = 0.045) compared with the controls. No difference in the incidence of AEs was observed between the two groups. Similarly, no significant differences were found in the 6-MWD, D-dimer levels, or interleukin-6 concentrations between the MSC and control groups.
CONCLUSIONS:
Our results demonstrate the safety and potential of MSC treatment for improved lung lesions and pulmonary function in convalescent COVID-19 patients. However, comprehensive and long-term studies are required to confirm the efficacy of MSC treatment.
TRIAL REGISTRATION
Chinese Clinical Trial Registry, ChiCTR2000031430.
Humans
;
COVID-19/therapy*
;
Female
;
Male
;
Mesenchymal Stem Cell Transplantation/adverse effects*
;
Middle Aged
;
Adult
;
Umbilical Cord/cytology*
;
Mesenchymal Stem Cells/cytology*
;
SARS-CoV-2
;
Aged
;
Treatment Outcome


Result Analysis
Print
Save
E-mail