1.Effect of cardiac shock wave therapy on electrocardiogram and myocardial perfusion in coronary artery disease patients
Chun-Mei TIAN ; Jing-Jing ZHENG ; Na JIA ; Lin ZHANG ; Bao-Yi LIU ; Jun-Meng LIU ; Ming LAN ; Bing LIU
Chinese Journal of Interventional Cardiology 2024;32(6):317-323
Objective To explore the effect of cardiac shock wave therapy(CSWT)on ST deviation of electrocardiogram and myocardial perfusion imaging in coronary artery disease(CAD)patients.Methods CAD patients who received CSWT in Cardiology Department of Beijing Hospital from December 2016 to August 2022 were enrolled.Three months of CSWT were conducted with a total of 9 times shock wave treatment.Clinical data,myocardial perfusion imaging data and stress electrocardiogram data were collected.Myocardial perfusion score,electrocardiographic data were compared before and after CSWT.Results A total of 55 patients were finally enrolled.There were 43 male and 12 female patients with an average age of(67.45±8.96)years old.ST deviation on 12 leads of electrocardiogram did not show significant difference before and after CSWT.Myocardial perfusion imaging showed global stress perfusion score(P=0.031)and reverse perfusion score(P=0.024).Global rest ischemia score reduced after CSWT(P=0.034).Target stress perfusion score(P=0.002),target reverse perfusion score(P=0.002),target reverse ischemic area(P=0.001)were improved after CSWT.Conclusions CSWT may not influence ST deviation of electrocardiogram,but may improve myocardial ischemia in CAD patients,
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3.High expression of the stemness-associated molecule Nanog in esophageal squamous cell carcinoma tissues promotes tumor invasion and metastasis by activating the TGF-β signaling pathway
Chang SUN ; Shiyao ZHENG ; Mei LI ; Ming YANG ; Mengyuan QIN ; Yuan XU ; Weihua LIANG ; Jianmin HU ; Lianghai WANG ; Feng LI ; Hong ZHOU ; Lan YANG
Journal of Southern Medical University 2024;44(6):1209-1216
Objective To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma(ESCC).Methods We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients.GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog,and TIMER online tool was used to analyze the correlations among TβR1,MMP-2,and MMP-9 in esophageal cancer.Results Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated.Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age,gender,or tumor differentiation.The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time.Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-β signaling pathway,and the expressions of MMP-2/MMP-9 and TβR1 were positively correlated.In cultured ESCC cells,Nanog knockdown significantly decreased the expression of TβR1,p-Smad2/3,MMP-2,and MMP-9 and strongly inhibited cell migration.Conclusion The high expressions of Nanog,MMP-2,and MMP-9,which are positively correlated,are closely related with invasion depth,lymph node metastasis,and prognosis of ESCC.Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-β signaling pathway,and its high expression promotes migration of ESCC cells.
4.High expression of the stemness-associated molecule Nanog in esophageal squamous cell carcinoma tissues promotes tumor invasion and metastasis by activating the TGF-β signaling pathway
Chang SUN ; Shiyao ZHENG ; Mei LI ; Ming YANG ; Mengyuan QIN ; Yuan XU ; Weihua LIANG ; Jianmin HU ; Lianghai WANG ; Feng LI ; Hong ZHOU ; Lan YANG
Journal of Southern Medical University 2024;44(6):1209-1216
Objective To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma(ESCC).Methods We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients.GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog,and TIMER online tool was used to analyze the correlations among TβR1,MMP-2,and MMP-9 in esophageal cancer.Results Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated.Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age,gender,or tumor differentiation.The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time.Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-β signaling pathway,and the expressions of MMP-2/MMP-9 and TβR1 were positively correlated.In cultured ESCC cells,Nanog knockdown significantly decreased the expression of TβR1,p-Smad2/3,MMP-2,and MMP-9 and strongly inhibited cell migration.Conclusion The high expressions of Nanog,MMP-2,and MMP-9,which are positively correlated,are closely related with invasion depth,lymph node metastasis,and prognosis of ESCC.Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-β signaling pathway,and its high expression promotes migration of ESCC cells.
5.Comparison of alkaloids in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Praeparata based on UHPLC-Q-Exactive Orbitrap MS/MS.
Sheng-Yun DAI ; Yi-Fang CUI ; Jing XU ; Hong-Yan ZHOU ; Shu-Yi SONG ; Xian-Ming LAN ; Wen-Wen ZHANG ; Jian ZHENG ; Jia-Yu ZHANG
China Journal of Chinese Materia Medica 2023;48(1):126-139
UHPLC-Q-Exactive Orbitrap MS/MS was used to systematically analyze and compare the alkaloids in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Praeparata. After the samples were pretreated in the solid-phase extraction cartridges, 0.1% ammonium hydroxide(A)-acetonitrile(B) was used for gradient elution. The LC-MS method for characterization of alkaloids in the three herbal medicines was established in ESI positive ion mode to collect high resolution MS data of reference substances and samples. On the basis of the information of reference substance cracking behavior, retention time, accurate molecular mass, and related literature, a total of 155 alkaloids were identified in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Prae-parata. Specifically, 130, 127, and 92 alkaloids were identified in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Praeparata, respectively. Monoester alkaloids and amino-alcohol alkaloids were dominant in the three herbal medicines, and the alkaloids in Aconiti Kusnezoffii Radix and Aconiti Radix were similar. This paper can provide a reference for elucidating the pharmacological effects and clinical application differences of the three herbal medicines produced from plants of Aconitum.
Tandem Mass Spectrometry
;
Aconitum
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal
;
Alkaloids
;
Plants, Medicinal
6.Effects of propiconazole on physiological and biochemical properties of Panax notoginseng and dietary risk assessment.
Zi-Xiu ZHENG ; Li-Sha QIU ; Kai ZHENG ; Lan-Ping GUO ; Xiu-Ming CUI ; Hong-Juan NIAN ; Ying-Cai LI ; Shao-Jun HUANG ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(5):1203-1211
To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.
Panax notoginseng/chemistry*
;
Panax
;
Antioxidants/pharmacology*
;
Saponins/pharmacology*
;
Glutathione
;
Risk Assessment
7.Physiological and biochemical mechanisms of brassinosteroid in improving anti-cadmium stress ability of Panax notoginseng.
Gao-Yu LIAO ; Zheng-Qiang JIN ; Lan-Ping GUO ; Ya-Meng LIN ; Zi-Xiu ZHENG ; Xiu-Ming CUI ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(6):1483-1490
In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.
Cadmium/metabolism*
;
Antioxidants/pharmacology*
;
Panax notoginseng
;
Brassinosteroids/pharmacology*
;
Chlorophyll/metabolism*
;
Plant Roots/metabolism*
;
Stress, Physiological
8.Binder jet 3D printing composite bilayer tablet of extended-release printing technology in the study
Wen-lan GUO ; Shan-shan WANG ; Xiao-xuan HONG ; Xiao-lu HAN ; Hui ZHANG ; Nan LIU ; Zeng-ming WANG ; Chun-di HU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2023;58(10):3108-3115
Based on the dual needs of analgesia and anti-inflammation in trauma treatment, this study uses acetaminophen and moxifloxacin hydrochloride as active pharmaceutical ingredients and develops a composite bilayer tablet with a dual-phase drug release system by using binder jet 3D printing technology. Due to the complexity of the 3D printing process, there is an interaction between the various parameters. Through the optimization of the process, the relationship between the key process parameters can be determined more intuitively. In this study, the process of extended-release tablets was optimized to maintain the mechanical properties of the tablets while realizing the regulation of release. The full-factor experimental design of three central points 23 was used to analyze the factors that significantly affect the quality attributes of extended-release tablets and the interaction between factors. The optimal extended-release process parameters were obtained by the response optimizer: the inkjet quantity of the printing ink was 10 (about 13.8 pL), the powder thickness was 180 μm, and the running speed was 360 mm·s-1. The
9. Effects of traditional korean medicine Lurong Dabu Decoction on TLR4/WNT-5A signaling pathway in guinea pigs with cough variant asthma
Hui-Wen LI ; Li-Na JIN ; Yi-Lan SONG ; Liang-Chang LI ; Guang-Hai YAN ; Qing-Ling MENG ; Huan LI ; Kai-Yue LIU ; Ming-Yu ZHENG
Chinese Pharmacological Bulletin 2023;39(5):978-985
Aim To discuss the mechanism of Lurong Dabu Decoction on cough variant asthma. Methods Guinea pigs were divided into normal group(CON), model group(OVA), Lurong Dabu Decoction high-dose group(HIGH),low-dose group(LOW), and dexamethasone group(DEX)at random. The CVA model was established by smoking plus injection of OVA, aluminum hydroxide solution and nebulized inhalation to stimulate cough. Gguinea pigs were dissected 24 hours after the last challenge to obtain alveolar lavage fluid(BALF)and lung tissues. Immunoadsorption(ELISA)method was applied to detect the types of inflammatory cells and the content of inflammatory cytokines in BALF; HE and Masson staining of the middle lobe of the left lung were used to observe the pathological changes in lung tissues; immunohistochemical staining was used to observe TLR4 and WNT-5A protein expression and distribution of lung tissues; the protein extracted from the upper lobe of the left lung was used to measure the level of TLR4 and WNT-5A protein in lung tissues by Western blot; immunofluorescence was employed to measure the fluorescence intensity of TLR4 and WNT-5A in lung tissues; flow cytometry was used to detect IL-4 and IFN-γ in guinea pig lung tissues. Results Lurong Dabu Decoction could improve guinea pig airway inflammation, inhibit collagen fiber deposition, reduce the content of IL-4, IL-5, and IL-13 in BALF, and inhibit the protein expression of TLR4 and WNT-5A in lung tissues and increase IFN-γ levels in lung tissues while decreasing IL-4 levels. Conclusion Lurong Dabu Decoction may inhibit the occurrence of CVA through TLR4/WNT-5A signaling pathway.
10.Therapeutic effect of ursodeoxycholic acid-berberine supramolecular nanoparticles on ulcerative colitis based on supramolecular system induced by weak bond.
Shan GAO ; Feng GAO ; Jing-Wei KONG ; Zhi-Jia WANG ; Hao-Cheng ZHENG ; Xin-Qi JIANG ; Shu-Jing XU ; Shan-Lan LI ; Ming-Jun LU ; Zi-Qi DAI ; Fu-Hao CHU ; Bing XU ; Hai-Min LEI
China Journal of Chinese Materia Medica 2023;48(10):2739-2748
Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Ursodeoxycholic Acid/adverse effects*
;
Berberine/pharmacology*
;
Interleukin-6
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Colon
;
Nanoparticles
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Colitis/chemically induced*

Result Analysis
Print
Save
E-mail