1.Transzonal Projections and Follicular Development Abnormalities in Polycystic Ovary Syndrome
Di CHENG ; Yu-Hua CHEN ; Xia-Ping JIANG ; Lan-Yu LI ; Yi TAN ; Ming LI ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2025;52(10):2499-2511
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting a substantial proportion of women of reproductive age. It is frequently associated with ovulatory dysfunction, infertility, and an increased risk of chronic metabolic diseases. A hallmark pathological feature of PCOS is the arrest of follicular development, closely linked to impaired intercellular communication between the oocyte and surrounding granulosa cells. Transzonal projections (TZPs) are specialized cytoplasmic extensions derived from granulosa cells that penetrate the zona pellucida to establish direct contact with the oocyte. These structures serve as essential conduits for the transfer of metabolites, signaling molecules (e.g., cAMP, cGMP), and regulatory factors (e.g., microRNAs, growth differentiation factors), thereby maintaining meiotic arrest, facilitating metabolic cooperation, and supporting gene expression regulation in the oocyte. The proper formation and maintenance of TZPs depend on the cytoskeletal integrity of granulosa cells and the regulated expression of key connexins, particularly CX37 and CX43. Recent studies have revealed that in PCOS, TZPs exhibit significant structural and functional abnormalities. Contributing factors—such as hyperandrogenism, insulin resistance, oxidative stress, chronic inflammation, and dysregulation of critical signaling pathways (including PI3K/Akt, Wnt/β‑catenin, and MAPK/ERK)—collectively impair TZP integrity and reduce their formation. This disruption in granulosa-oocyte communication compromises oocyte quality and contributes to follicular arrest and anovulation. This review provides a comprehensive overview of TZP biology, including their formation mechanisms, molecular composition, and stage-specific dynamics during folliculogenesis. We highlight the pathological alterations in TZPs observed in PCOS and elucidate how endocrine and metabolic disturbances—particularly androgen excess and hyperinsulinemia—downregulate CX43 expression and impair gap junction function, thereby exacerbating ovarian microenvironmental dysfunction. Furthermore, we explore emerging therapeutic strategies aimed at preserving or restoring TZP integrity. Anti-androgen therapies (e.g., spironolactone, flutamide), insulin sensitizers (e.g., metformin), and GLP-1 receptor agonists (e.g., liraglutide) have shown potential in modulating connexin expression and enhancing granulosa-oocyte communication. In addition, agents such as melatonin, AMPK activators, and GDF9/BMP15 analogs may promote TZP formation and improve oocyte competence. Advanced technologies, including ovarian organoid models and CRISPR-based gene editing, offer promising platforms for studying TZP regulation and developing targeted interventions. In summary, TZPs are indispensable for maintaining follicular homeostasis, and their disruption plays a pivotal role in the pathogenesis of PCOS-related folliculogenesis failure. Targeting TZP integrity represents a promising therapeutic avenue in PCOS management and warrants further mechanistic and translational investigation.
2.Research status of gene mutation encoding cardiomyocyte sarcomere and hypertrophic cardiomyopathy
Ya-Fen CHEN ; Cheng-Yi WANG ; Li-Xia YU ; Shu-Su DONG ; Li-Ming CHEN ; Hai-Ying WANG
The Chinese Journal of Clinical Pharmacology 2024;40(1):130-134
Mutations in myosin heavy chain 7(MYH7)and myosin binding protein C3(MYBPC3)genes encoding thick filaments are the main cause of hypertrophic cardiomyopathy(HCM),while a small part of HCM is caused by mutations of troponin C1,slow skeletal and cardiac type(TNNC1),troponin T2,cardiac type(TNNT2),troponin I3,cardiac type(TNNI3),actin alpha cardiac muscle 1(ACTC1),and tropomyosin 1(TPM1)genes encoding thin filaments.In this review,we mainly introduce the detailed mechanism and research status of HCM caused by mutations of the gene encoding cardiomyocyte sarcomere in the past few years,in order to provide reference for further study of the pathogenesis and treatment of HCM.
3.Antioxidant activity and organ protection of Panax notoginseng polysaccharide on oxidative damage and aging model mice
Meng-Yue DENG ; Pan-Pan WEI ; Ming LI ; Zi-Jun YAN ; Die XIA ; Yu-Zhen DING ; Lei ZHANG ; Tong CHEN
The Chinese Journal of Clinical Pharmacology 2024;40(6):889-893
Objective To study the antioxidant activity and organ protection of different components of Panax notoginseng polysaccharide(PNPS)in D-galactose-induced oxidative damage aging model mice.Methods KM mice were randomly divided into normal group,model group,vitamin C(VC)group(given 200 mg·kg-1 VC),crude polysaccharide from Panax notoginseng(CPPN)group,neutral polysaccharide from Panax notoginseng(NPPN)group and acidic polysaccharide from Panax notoginseng(APPN-Ⅰ,APPN-Ⅱ,APPN-Ⅲ)group(given 400 mg·kg-1 CPPN,NPPN,APPN-Ⅰ,APPN-Ⅱ,APPN-Ⅲ,respectively).Except for the normal group,oxidative injury aging mouse models were established by intraperitoneal injection of 1 g·kg-1 D-galactose.The mice were sacrificed after continuous administration for 42 days,and serum and liver homogenate were prepared.Malondialdehyde(MDA)was determined by thiobarbituric acid method;superoxide dismutase(SOD)was determined by tetrazole salt method;glutathione peroxidase(GSH-Px)was determined by double antibody sandwich method.Results Serum SOD in the normal group,model group,VC group,CPPN group,NPPN group and APPN-Ⅰ,APPN-Ⅱ,APPN-Ⅲ groups were(15.07±0.69),(12.79±1.51),(15.56±1.01),(13.69±0.96),(14.27±0.64),(14.31±0.99),(14.18±0.79)and(15.85±0.89)U·mL-1;serum GSH-Px were(105.35±4.97),(90.36±4.31),(111.51±7.00),(113.03±8.06),(118.77±5.19),(123.60±8.08),(131.65±3.60)and(149.22±13.32)ng·L-1;serum MDA were(1.72±0.26),(4.16±0.92),(2.26±0.59),(2.82±0.47),(2.46±0.50),(1.98±0.41),(2.39±0.39)and(2.07±0.24)nmol·mL-1;the liver SOD were(234.22±3.84),(205.04±7.28),(234.63±6.37),(214.99±17.66),(234.13±3.63),(234.63±3.44),(233.87±5.63)and(235.42±2.33)U·mgprot-1;liver GSH-Px were(274.27±23.72),(207.00±15.22),(257.68±16.39),(249.79±18.78),(252.62±10.92),(256.25±21.83),(261.20±17.52)and(263.16±17.98)ng·L-1;liver MDA were(35.70±3.52),(49.65±6.32),(36.15±2.48),(39.17±4.29),(37.40±6.19),(35.34±4.06)and(35.90±5.36),(33.31±7.64)nmol·mgprot-1.Compared with the normal group,SOD,GSH-Px in serum and liver of mice in the model group were significantly reduced,and the content of MDA was significantly increased(all P<0.01).After treatment with different components of Panax notoginseng polysaccharide,the oxidative indicators in mice were significantly improved,among which APPN-Ⅲ have the best antioxidant activity,which could significantly increase the activities of SOD,GSH-Px in serum and liver,and reduce the content of MDA(all P<0.01).Conclusion Different components of Panax notoginseng polysaccharide have antioxidant activity and organ protection in vivo,among which APPN-Ⅲ has the best antioxidant activity and has a good organ protection effect.
4.Effects of high altitude hypoxia on the expression of ATP-binding cassette transporter in blood-brain barrier
Ming-Xia ZHANG ; Qiang ZHANG ; Wen-Bin LI ; Yan-Mei XU ; Rong WANG
The Chinese Journal of Clinical Pharmacology 2024;40(10):1488-1491
Objective This study aimed to investigate the effects of high-altitude hypoxia on the expression of ATP-binding cassette(ABC)transport proteins in the blood-brain barrier(BBB)and explore the mechanisms influencing their expression.Methods Wistar rats were divided into 1500 m group(Lanzhou field),4010 m group(simulated 4010 m,low-pressure oxygen chamber,hypoxia for 3 days),6000 m group(simulated 6000 m,low-pressure oxygen chamber,hypoxia for 3 days),phenytoin sodium+1500 m group(given 50 mg·kg-1 phenytoin sodium on the basis of the 1500 m group),phenytoin sodium+4010 m group(given 50 mg·kg-1 phenytoin sodium on the basis of the 4010 m group),phenytoin sodium+6000 m group(given 50 mg·kg-1 phenytoin sodium on the basis of the 6000 m group),and hypoxia 1 d group,hypoxia 2 d group,hypoxia 3 d group,hypoxia 4 d group(simulated altitude of 4010 m,low-oxygen chamber,hypoxia for 1,2,3,4 days).Western blot was used to detect the expression of BBB tissue proteins;and liquid chromatography-tandem mass spectrometry was used to measure the concentration of phenytoin sodium in cerebrospinal fluid.Results The relative expression levels of P-glycoprotein(P-gp)in the 1500 m,4010 m,6000 m groups were 1.00±0.04,1.84±0.02,2.10±0.05,respectively;the relative expression levels of multidrug resistance-associated protein-4(MRP4)were 1.00±0.05,2.77±0.08,4.42±0.03,respectively;the concentrations of phenytoin sodium in cerebrospinal fluid were(864.78±348.32),(1 000.22±273.90),and(1 214.17±314.09)ng·mL-1,respectively.The differences in the above indicators between the 1500 m,4010 m,and 6000 m groups were statistically significant(all P<0.05).The relative expression levels of P-gp in the hypoxia 1 d,2 d,3 d,4 d groups were 1.00±0.03,1.85±0.04,3.10±0.02,2.17±0.05,respectively;the relative expression levels of MRP4 were 1.00±0.05,1.79±0.10,1.60±0.08,1.31±0.06,respectively;the differences in the above indicators between the hypoxia 1 d,2 d,3 d,4 d groups were statistically significant(all P<0.05).Conclusion Different high-altitude hypoxic environments have different effects on the expression of ABC transport proteins in the BBB,influencing the drug concentrations of their substrate drugs in the body.
5.Mechanism and research progress of S100A8/A9 in the microenvironment before high-risk tumor metastasis
Hai-Xia MING ; Zhao-Hua LIU ; Yan-Jun WANG ; Ming SHEN ; Yan-Wen CHEN ; Yang LI ; Ling-Ling YANG ; Qian-Kun LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1991-1995
S100 calc-binding protein A8/A9(S100A8/A9)can induce the migration of primary tumor cells to distant target organs by binding multiple channel proteins,promote the formation of tumor metastasis microenvironment,and play an important role in the immune and inflammatory response of the body.It provides a new target and idea for the prevention and treatment of tumor metastasis and invasion.This paper mainly reviewed the expression and mechanism of S100A8/A9 on related channel proteins in a variety of high incidence tumors,in order to provide a new strategy for tumor prevention,diagnosis and treatment.
6.Development and Application of Detection Methods for Capture and Transcription Elongation Rate of Bacterial Nascent RNA
Yuan-Yuan LI ; Yu-Ting WANG ; Zi-Chun WU ; Hao-Xuan LI ; Ming-Yue FEI ; Dong-Chang SUN ; O. Claudio GUALERZI ; Attilio FABBRETTI ; Anna Maria GIULIODORI ; Hong-Xia MA ; Cheng-Guang HE
Progress in Biochemistry and Biophysics 2024;51(9):2249-2260
ObjectiveDetection and quantification of RNA synthesis in cells is a widely used technique for monitoring cell viability, health, and metabolic rate.After exposure to environmental stimuli, both the internal reference gene and target gene would be degraded. As a result, it is imperative to consider the accurate capture of nascent RNA and the detection of transcriptional levels of RNA following environmental stimulation. This study aims to create a Click Chemistry method that utilizes its property to capture nascent RNA from total RNA that was stimulated by the environment. MethodsThe new RNA was labeled with 5-ethyluridine (5-EU) instead of uracil, and the azido-biotin medium ligand was connected to the magnetic sphere using a combination of “Click Chemistry” and magnetic bead screening. Then the new RNA was captured and the transcription rate of 16S rRNA was detected by fluorescence molecular beacon (M.B.) and quantitative reverse transcription PCR (qRT-PCR). ResultsThe bacterial nascent RNA captured by “Click Chemistry” screening can be used as a reverse transcription template to form cDNA. Combined with the fluorescent molecular beacon M.B.1, the synthesis rate of rRNA at 37℃ is 1.2 times higher than that at 15℃. The 16S rRNA gene and cspI gene can be detected by fluorescent quantitative PCR,it was found that the measured relative gene expression changes were significantly enhanced at 25℃ and 16℃ when analyzed with nascent RNA rather than total RNA, enabling accurate detection of RNA transcription rates. ConclusionCompared to other article reported experimental methods that utilize screening magnetic columns, the technical scheme employed in this study is more suitable for bacteria, and the operation steps are simple and easy to implement, making it an effective RNA capture method for researchers.
7.Establishment and evaluation of a rapid PCR-colloidal gold test strip method for the detection of Fritillaria ussuriensis
Yu-he MA ; Cong-hui SHANG ; Qiu-he MA ; Tao LI ; Yue LIU ; Bei-zhen PAN ; Li-jun GAO ; Ming-cheng LI ; Wei XIA ; Yong-mei QU
Acta Pharmaceutica Sinica 2024;59(6):1773-1778
This study design of specific identification primers for the ITS2 sequence of
8.Study on multi-component contents of Jinqi Jiangtang Capsule
Tian TIAN ; Rong SHI ; Jia-sheng WU ; Tian-ming WANG ; Jian-guo LI ; Guo-feng XIA ; An-ning LI ; Yuan-yuan LI ; Yue-ming MA
Acta Pharmaceutica Sinica 2024;59(10):2849-2856
Jinqi Jiangtang Capsule (JQJTC) is clinically used for the prevention and treatment of type 2 diabetes, but the contents of its main chemical components are not yet clear. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the determination of 15 components in JQJTC, including new chlorogenic acid, chlorogenic acid, cryptochlorogenic acid, formononetin, ononin, calycosin, calycosin-7-glucoside, astragaloside IV, berberine, epiberberine, berberrubine, coptisine, jatrorrhizine, palmatine and magnoflorine. The method was used to determine the contents of 15 components in the capsule and then to investigate the influence of excipients on the contents of the components in JQJTC. The separation was performed on a ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with a mobile phase consisting of 0.1% acetic acid and 5 mmol·L-1 ammonium acetate (A) and acetonitrile (B) with gradient elution at a flow rate of 0.3 mL·min-1 and a column temperature at 40 ℃. Electron spray ionization was used for mass spectrometry in positive ion mode. The established method meets the requirements of methodology of content determination in Chinese pharmacopoeia. The contents of 15 components in JQJTC varied from high to low. The top 5 contents were berberine, chlorogenic acid, magnoflorine, coptisine, and cryptochlorogenic acid, accounting for 87.31% of the total content. The contents of 10 components, including the alkaloids of coptidis rhizoma (berberine, epiberberine, berberrubine, coptisine, jatrorrhizine, palmatine and magnoflorine) and the organic acids of honeysuckle (new chlorogenic acid, chlorogenic acid, and cryptochlorogenic acid) in the whole formula extract without excipients was significantly lower than that in the capsule. These components accounted for 99.20% of the determined component contents. In this experiment, an accurate, sensitive and efficient UHPLC-MS/MS method for the determination of multi-components in JQJTC was established, which stably and reliably detected the contents of 15 components in the capsule and could provide the basis for more comprehensive quality analysis. It was also found that excipients had an increasing effect on the contents of detected alkaloid and organic acid components, which may be beneficial to the effectiveness of the capsules.
9.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
10.Key Components of Fishy Smell of Eupolyphaga Steleophaga by Head Space-Solid Phase Microextraction-GC-MS and Odor Activity Value
Hongyan MA ; Hong FAN ; Qian LIU ; Xue LI ; Hui YE ; Dingkun ZHANG ; Yongmei GUAN ; Ming YANG ; Houlin XIA
Chinese Journal of Modern Applied Pharmacy 2024;41(1):88-96
To determine the main components of the fishy smell of the Eupolyphaga Steleophaga, and to provide a theoretical basis for deodorizing the Eupolyphaga Steleophaga.
METHODS
Head space-solid phase microextraction-gas chromatography-mass spectrometry was used to identify the components of 10 batches of Eupolyphaga Steleophaga, and area normalization method and chemometrics method were used to analyze the smelly gas of different batches. Odor activity value(OAV) was used to evaluate the contribution of odor components and identify key odor components.
RESULTS
A total of 87 volatile odor components were identified, the key fishy smell compounds(OAV≥1) were m-methylphenol, dimethyltrisulfide, 4-methylphenol, 2-methyliso-borneol, 2-etzol, 4-methylvaleric acid, iso-valeric acid, etc. Modified fishy gas composition(0.1


Result Analysis
Print
Save
E-mail