1.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
2.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
3.Dahuang Zhechong Pills delay heart aging by reducing cardiomyocyte apoptosis via PI3K/AKT/HIF-1α signaling pathway.
Wen-Jie LIU ; Yue TU ; Wei-Ming HE ; Si-Yi LIU ; Liu-Yun-Xin PAN ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN
China Journal of Chinese Materia Medica 2025;50(5):1276-1285
This study aimed to investigate the effect of Dahuang Zhechong Pills(DHZCP) in delaying heart aging(HA) and explore the potential mechanism. Network pharmacology and molecular docking were employed to explore the targets and potential mechanisms of DHZCP in delaying HA. Furthermore, in vitro experiments were conducted with the DHZCP-containing serum to verify key targets and pathways in D-galactose(D-gal)-induced aging of cardiomyocytes. Active components of DHZCP were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCSMP), and relevant targets were predicted. HA-related targets were screened from the GeneCards, Online Mendelian Inheritance in Man(OMIM), and DisGeNET. The common targets shared by the active components of DHZCP and HA were used to construct a protein-protein interaction network in STRING 12.0, and core targets were screened based on degree in Cytoscape 3.9.1. Metaspace was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of the core targets to predict the mechanisms. Molecular docking was performed in AutoDock Vina. The results indicated that a total of 774 targets of the active components of DHZCP and 4 520 targets related to HA were screened out, including 510 common targets. Core targets included B-cell lymphoma 2(BCL-2), serine/threonine kinase 1(AKT1), and hypoxia-inducible factor 1 subunit A(HIF1A). The GO and KEGG enrichment analyses suggested that DHZCP mainly exerted its effects via the phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway, HIF-1α signaling pathway, longevity signaling pathway, and apoptosis signaling pathway. Among the pathways predicted by GO and KEGG enrichment analyses, the PI3K/AKT/HIF-1α signaling pathway was selected for verification. The cell-counting kit 8(CCK-8) assay showed that D-gal significantly inhibited the proliferation of H9c2 cells, while DHZCP-containing serum increased the viability of H9c2 cells. SA-β-gal staining revealed a significant increase in the number of blue-green positive cells in the D-gal group, which was reduced by DHZCP-containing serum. TUNEL staining showed that DHZCP-containing serum decreased the number of apoptotic cells. After treatment with DHZCP-containing serum, the protein levels of Klotho, BCL-2, p-PI3K/PI3K, p-AKT1/AKT1, and HIF-1α were up-regulated, while those of P21, P16, BCL-2 associated X protein(Bax), and cleaved caspase-3 were down-regulated. The results indicated that DHZCP delayed HA via multiple components, targets, and pathways. Specifically, DHZCP may delay HA by reducing apoptosis via activating the PI3K/AKT/HIF-1α signaling pathway.
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Apoptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Animals
;
Rats
;
Humans
;
Molecular Docking Simulation
;
Aging/metabolism*
;
Protein Interaction Maps/drug effects*
;
Heart/drug effects*
;
Network Pharmacology
4.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
5.Advances in pathogenesis of asthma airway remodeling and intervention mechanism of traditional Chinese medicine.
Ya-Sheng DENG ; Jiang LIN ; Yu-Jiang XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Xi MING
China Journal of Chinese Materia Medica 2025;50(8):2050-2070
Asthma, a chronic inflammatory airway disease with a high global prevalence, has a complex pathogenesis, in which airway remodeling plays a key role in the chronicity of the disease. Airway remodeling involves a series of pathophysiological changes, including airway epithelial damage, proliferation of mucous glands and goblet cells, subepithelial fibrosis, proliferation and migration of airway smooth muscle cells, and epithelial-mesenchymal transition. These complex pathological changes significantly increase airway resistance and responsiveness, forming an important pathological basis for refractory asthma. Currently, the regulatory mechanisms of airway remodeling focus on signaling pathways and regulatory targets. The signaling pathways include phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), nuclear factor-κB(NF-κB), transforming growth factor-β1(TGF-β1)/Smads, and mitogen-activated protein kinase(MAPK). The regulatory targets include microRNAs(miRNAs), competing endogenous RNAs(ceRNAs), long non-coding RNAs(lncRNAs), and circular RNAs(circRNAs). Key proteins involved in these processes include TGF-β1, silencing information regulator 2-related enzyme 1(SIRT1), chitinase 3-like protein 1(YKL-40), and adenosine deaminase-metalloproteinase 33(ADAM33). In recent years, the potential of traditional Chinese medicine in the treatment of asthma has become increasingly evident. Its active ingredients, extracts, and complexes can inhibit airway remodeling in asthma through multiple pathways, demonstrating a variety of effects, including anti-inflammatory actions, inhibition of smooth muscle cell proliferation and migration, regulation of epithelial-mesenchymal transition, attenuation of fibrosis and basement membrane thickening, reduction of mucus secretion, inhibition of vascular remodeling, modulation of immune imbalance, and antioxidative stress. This paper aims to provide an in-depth analysis of the pathogenesis and therapeutic targets of asthma, offering theoretical support and innovative strategies for clinical research and drug development in the treatment of asthma.
Asthma/pathology*
;
Humans
;
Airway Remodeling/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Signal Transduction/drug effects*
;
Medicine, Chinese Traditional
;
Transforming Growth Factor beta1/metabolism*
6.Professor YANG Zhong-qi's prescription patterns for hypertension based on latent structure model and association rule analysis.
Hui-Lin LIU ; Shi-Hao NI ; Xiao-Jiao ZHANG ; Wen-Jie LONG ; Xiao-Ming DONG ; Zhi-Ying LIU ; Hui-Li LIAO ; Zhong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(10):2865-2874
Based on latent structure model and association rule analysis, this study investigates the prescription patterns used by professor YANG Zhong-qi in treating hypertension with traditional Chinese medicine(TCM) and infers the associated TCM syndromes, providing a reference for clinical syndrome differentiation and treatment. The observation window spanned from January 8, 2013, to June 26, 2024, during which qualified herbal decoction prescriptions meeting efficacy criteria were extracted from the outpatient medical record system of the First Affiliated Hospital of Guangzhou University of Chinese Medicine and compiled into a standardized database. Statistical analysis of high-frequency herbs included frequency counts and herbal property-channel tropism analysis. Latent structure modeling and association rule analysis were performed using R 4.3.2 and Lantern 5.0 software to identify core herbal combinations and infer TCM syndrome patterns. A total of 2 436 TCM prescriptions were included in the study, involving 263 drugs with a cumulative frequency of 29 783. High-frequency herbs comprised Uncariae Ramulus cum Uncis, Poria, Glycyrrhizae Radix et Rhizoma, Puerariae Lobatae Radix, and Alismatis Rhizoma, predominantly categorized as deficiency-tonifying, heat-clearing, and blood-activating and stasis-resolving herbs. Latent structure analysis identified 18 latent variables, 74 latent classes, 5 comprehensive clustering models, and 15 core herbal combinations, suggesting that the core syndrome clusters include liver Yang hyperactivity pattern, Yin deficiency with Yang hyperactivity pattern, phlegm-stasis intermingling pattern, and liver-kidney insufficiency pattern. Association rule analysis revealed 22 robust association rules. RESULTS:: indicate that hypertension manifests as a deficiency-rooted excess manifestation, significantly associated with functional dysregulation of the liver, lung, spleen-stomach, heart, and kidney. Key pathogenic mechanisms involve liver Yang hyperactivity, phlegm-stasis interaction, and liver-kidney insufficiency. Therapeutic strategies should prioritize liver-calming, spleen-fortifying, and deficiency-tonifying principles, supplemented by dynamic regulation of Qi-blood and Yin-Yang balance according to syndrome evolution, alongside pathogen-eliminating methods such as phlegm-resolving and stasis-dispelling. Synergistic interventions like mind-tranquilizing therapies should be tailored to individual conditions.
Hypertension/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional
;
Drug Prescriptions
;
Latent Class Analysis
7.Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces.
Han-Wen ZHANG ; Yue-E LI ; Jia-Wei YU ; Qiang GUO ; Ming-Xuan LI ; Yu LI ; Xi MEI ; Lin LI ; Lian-Lin SU ; Chun-Qin MAO ; De JI ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(13):3605-3614
Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.
Machine Learning
;
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
Humans
8.Research progress on molecular mechanisms of ginsenosides in alleviating acute lung injury.
Han-Yang ZHAO ; Xun-Jiang WANG ; Qiong-Wen XUE ; Bao-Lian XU ; Xu WANG ; Shu-Sheng LAI ; Ming CHEN ; Li YANG ; Zheng-Tao WANG ; Li-Li DING
China Journal of Chinese Materia Medica 2025;50(16):4451-4470
Acute lung injury(ALI) is a critical clinical condition primarily characterized by refractory hypoxemia and infiltration of inflammatory cells in lung tissue, which can progress into a more severe form known as acute respiratory distress syndrome(ARDS). Immune cells and inflammatory cytokines play important roles in the progression of the disease. Due to its unclear pathogenesis and the lack of effective clinical treatments, ALI is associated with a high mortality rate and severely affects patients' quality of life, making the search for effective therapeutic agents particularly urgent. Ginseng Radix et Rhizoma, the dried root of the perennial herb Panax ginseng from the Araliaceae family, contains active ingredients such as saponins and polysaccharides, which possess various pharmacological effects including anti-tumor activity, immune regulation, and metabolic modulation. In recent years, studies have shown that ginsenosides exhibit notable effects in reducing inflammation, ameliorating epithelial and endothelial cell injury, and providing anticoagulant action, indicating their comprehensive role in alleviating lung injury. This review summarizes the pathogenesis of ALI and the molecular mechanisms through which ginsenosides act at different stages of ALI development. The aim is to provide a scientific reference for the development of ginsenoside-based drugs targeting ALI, as well as a theoretical basis for the clinical application of Ginseng Radix et Rhizoma in the treatment of ALI.
Ginsenosides/pharmacology*
;
Humans
;
Acute Lung Injury/immunology*
;
Animals
;
Panax/chemistry*
;
Drugs, Chinese Herbal
9.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
10.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.

Result Analysis
Print
Save
E-mail