1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
3.A study on the preparation of a BGN-loaded thermosensitive adhesive and its performance in barrier membrane fixation
WANG Yuzhu ; GU Junting ; LI Zhiting ; BAI Que ; DANG Gaopeng ; WANG Yifei ; SUN Xiaotang ; NIU Lina ; FANG Ming
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):41-53
Objective:
To investigate the barrier membrane fixation performance and enhanced guided bone regeneration (GBR) capability of a thermosensitive adhesive containing bioactive glass nanoparticles in order to provide a novel solution for membrane fixation during GBR procedures.
Methods:
M2NP@BGN (methoxyethyl acrylate-co-N-isopropylacrylamide-co-protocatechuic acid@Bioactive glass nanoparticle), a thermosensitive adhesive, was synthesized via free radical polymerization by compositing methoxyethyl acrylate, N-isopropylacrylamide, and protocatechuic acid into a basic adhesive that was modified with bioactive glass nanoparticle (BGN). The successful fabrication of basic adhesive M2NP was characterized by attenuated total reflection-Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The thermosensitive adhesive M2NP@BGN (BGN concentration of 1 mg/mL) was characterized by scanning electron microscopy and a rheometer. By adjusting the BGN concentration (0.1 mg/mL, 0.5 mg/mL, 1 mg/mL, and 2 mg/mL), the adhesive and mechanical strengths were investigated with a universal testing machine. Biocompatibility was evaluated with a cell counting kit-8 assay and hemolysis test to identify the optimal formulation. The optimal material’s extract was co-cultured with mouse bone marrow mesenchymal stem cells, and its osteogenic activity was examined in vitro by quantitative real-time PCR, alkaline phosphatase, and alizarin red S staining. The rat mandibular defect model was established, filled with bone graft, and divided into 3 groups based on membrane fixation method: M2NP@BGN (BGN concentration of 1 mg/mL) fixation group (M2NP@BGN), titanium nail fixation group (Nail), and unfixed control group (Negative). Bone regeneration was analyzed after 8 weeks by micro computed tomography and histological staining.
Results:
M2NP@BGN (BGN concentration of 1 mg/mL) was successfully synthesized and demonstrated rapid gelation under warm, humid conditions. The adhesive with a BGN concentration of 1 mg/mL exhibited the highest adhesive strength (P < 0.001) and significantly enhanced mechanical strength (P < 0.001) under 37℃ wet conditions. All formulations showed excellent biocompatibility, with cell viability > 80% and hemolysis ratio < 5%. M2NP@BGN (BGN concentration of 1 mg/mL) significantly upregulated the expression of Runx2 and Col I (P < 0.001) and enhanced the activity of osteogenic differentiation markers (P < 0.05). In the animal model, the M2NP@BGN group (BGN concentration of 1 mg/mL) achieved significantly higher bone volume fraction and better bone maturity compared to the negative and nail groups (P < 0.05).
Conclusion
M2NP@BGN (BGN concentration of 1 mg/mL) combines excellent wet adhesion with potent osteogenic activity, enhances the bone augmentation efficacy of membranes, and presents a novel fixation strategy with significant clinical translation potential for GBR therapy.
4.Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice
Nan ZHANG ; Huaiyin LI ; Xiaodi LIAN ; Juanpeng WEI ; Ming GAO
Laboratory Animal and Comparative Medicine 2025;45(1):73-78
Objective This study aims to investigate the effects of varying durations of light exposure on body weight and learning and memory abilities of pubertal NIH mice. Methods Forty pubertal NIH mice, evenly split by gender and with similar initial weights, were subjected to a 12 h light-dark cycle for one week. They were then randomly assigned to groups with daily light exposure durations of 0, 6, 12, 18, and 24 hours, with 8 mice in each group. The experimental period lasted for 7 weeks, with the first 5 weeks as the feeding phase under different light exposure conditions, and the last 2 weeks as the behavioral testing phase. Their body weight was monitored, and learning and memory abilities were assessed using the T-maze, object location test, and eight-arm maze tests. Results During the light exposure period, there were no significant differences in body weight among groups (P>0.05). However, the weight gain of mice in the 24 h group was significantly higher than that of the 0 h group and the 6 h group during the second and third weeks of light exposure (P<0.05). After five weeks of light exposure, in the T-maze test, the latency time of the 0 h light exposure group was significantly longer than that of the 12 h group (P<0.01), and the latency time of the 24 h light exposure group was significantly longer than that of the 12 h group (P<0.05). In the object location test, the mice in 12 h group exhibited a higher discrimination index and spent more time observing the new location compared to the other groups, with significant differences in comparison to the 18 h group (P<0.01) and the 24 h group (P<0.05). In the eight-arm maze test, the time to find food, the reference memory error rate, and the working memory error rate in the 12 h group were all lower than those in the 0 h group, with significant differences (P<0.05). Moreover, the working memory error rate in the 24 h group was higher than that in the 12 h group, with significant differences (P<0.05). Conclusion Continuous 24 h light exposure affects body weight gain, while light exposure durations exceeding 18 h or below 6 h per day weaken the learning and memory abilities of NIH mice.
5.Effects of clopidogrel on the pharmacokinetics and pharmacodynamics of ciprofol in rats
Ming LU ; Xiaoyu YIN ; Wenli LI ; Shan LI ; Xiangchen LI ; Zhiqing ZHANG
China Pharmacy 2025;36(2):179-184
OBJECTIVE To investigate the effects of clopidogrel on the pharmacokinetics and pharmacodynamics of ciprofol in rats. METHODS Eighteen male SD rats were randomly divided into control group, clopidogrel normal-dose group and clopidogrel high-dose group, with 6 rats in each group. Among them, rats in the normal-dose group and high-dose group were given 7.5 mg/kg and 15 mg/kg clopidogrel by gavage, respectively, and rats in the control group were given the same volume of 0.5% sodium carboxymethyl cellulose solution, once a day, for 14 consecutive days. Afterward, 2.4 mg/kg ciprofol was injected by tailvein and blood samples were collected from the inner canthus of the eye at 2, 4, 8, 12, 16, 20, 30, 45 and 60 min after the end of the administration. During this period, the duration of the loss of righting reflex (LORR) in rats was counted. After the proteins were precipitated by acetonitrile, the rat plasma sample was analyzed by LC-MS/MS using deuterated ciprofol as the internal standard, Symmetry C18 as the chromatographic column, and acetonitrile-0.01% ammonia solution containing 5 mmol/L ammonium acetate (gradient elution) as the mobile phase to detect the concentration of ciprofol in the plasma. The pharmacokinetic parameters in rats were calculated by using DAS 2.0 software. RESULTS Compared with control group, area under the drug concentration-time curve and mean residence time of ciprofol increased or prolonged significantly, while plasma clearance decreased significantly in clopidogrel normal-dose and high-dose groups; the duration of LORR in rats was prolonged by 19.5% and 23.9%, with statistical difference (P<0.05). However, there was no statistically significant difference in the pharmacokinetic parameters or LORR duration of ciprofol between the different dose groups of clopidogrel (P>0.05). CONCLUSIONS Clopidogrel could inhibit the metabolism of ciprofol in rats and prolong the duration of LORR.
6.Classification and advances in clinical research of artificial colloidal plasma substitutes
Zhengyang CHANG ; Ming LI ; Jianpeng GAO ; Jing ZHANG ; Hua LYU ; Licheng ZHANG
Chinese Journal of Blood Transfusion 2025;38(1):136-141
The number of patients with reduced blood volume due to haemorrhage, fractures, severe infections, extensive burns and tumours is increasing, and traditional blood products are no longer able to meet the increasing clinical demand. Therefore, plasma substitutes have become particularly important in fluid resuscitation, especially artificial colloidal solutions, which have a sustained volume expansion time and a good volume expansion effect, and can significantly improve the circulatory status of patients. This article aims to review the classification of artificial colloidal plasma substitutes and their research progress in clinical practice, in order provide a more rigorous, professional and standardized reference for medicine.
7.Effects of clopidogrel on the pharmacokinetics and pharmacodynamics of ciprofol in rats
Ming LU ; Xiaoyu YIN ; Wenli LI ; Shan LI ; Xiangchen LI ; Zhiqing ZHANG
China Pharmacy 2025;36(2):179-184
OBJECTIVE To investigate the effects of clopidogrel on the pharmacokinetics and pharmacodynamics of ciprofol in rats. METHODS Eighteen male SD rats were randomly divided into control group, clopidogrel normal-dose group and clopidogrel high-dose group, with 6 rats in each group. Among them, rats in the normal-dose group and high-dose group were given 7.5 mg/kg and 15 mg/kg clopidogrel by gavage, respectively, and rats in the control group were given the same volume of 0.5% sodium carboxymethyl cellulose solution, once a day, for 14 consecutive days. Afterward, 2.4 mg/kg ciprofol was injected by tailvein and blood samples were collected from the inner canthus of the eye at 2, 4, 8, 12, 16, 20, 30, 45 and 60 min after the end of the administration. During this period, the duration of the loss of righting reflex (LORR) in rats was counted. After the proteins were precipitated by acetonitrile, the rat plasma sample was analyzed by LC-MS/MS using deuterated ciprofol as the internal standard, Symmetry C18 as the chromatographic column, and acetonitrile-0.01% ammonia solution containing 5 mmol/L ammonium acetate (gradient elution) as the mobile phase to detect the concentration of ciprofol in the plasma. The pharmacokinetic parameters in rats were calculated by using DAS 2.0 software. RESULTS Compared with control group, area under the drug concentration-time curve and mean residence time of ciprofol increased or prolonged significantly, while plasma clearance decreased significantly in clopidogrel normal-dose and high-dose groups; the duration of LORR in rats was prolonged by 19.5% and 23.9%, with statistical difference (P<0.05). However, there was no statistically significant difference in the pharmacokinetic parameters or LORR duration of ciprofol between the different dose groups of clopidogrel (P>0.05). CONCLUSIONS Clopidogrel could inhibit the metabolism of ciprofol in rats and prolong the duration of LORR.
8.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
9.Research advances in liver venous deprivation
Bensong HE ; Ming XIAO ; Qijia ZHANG ; Canhong XIANG ; Yanxiong WANG ; Yingbo LI ; Zhishuo WANG
Journal of Clinical Hepatology 2025;41(1):183-188
Portal vein embolization (PVE) can induce atrophy of the embolized lobe and compensatory regeneration of the non-embolized lobe. However, due to inadequate regeneration of future liver remnant (FLR) after PVE, some patients remain unsuitable for hepatectomy after PVE. In recent years, liver venous deprivation (LVD), which combines PVE with hepatic vein embolization (HVE), has induced enhanced FLR regeneration. Compared with associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), LVD triggers faster and more robust FLR regeneration, with lower incidence rate of postoperative complications and mortality rate. By reviewing related articles on LVD, this article introduces the effectiveness of LVD and analyzes the differences and safety of various technical paths, and it is believed that LVD is a safe and effective preoperative pretreatment method.
10.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.


Result Analysis
Print
Save
E-mail