1.Individualized treatment and pharmaceutical care for breast cancer complicated with chronic kidney disease
Lu YU ; Xudong WU ; Ming ZHANG
China Pharmacy 2025;36(7):853-857
OBJECTIVE To provide a reference for individualized treatment and pharmaceutical care for patients with breast cancer complicated with chronic kidney disease (CKD). METHODS Clinical pharmacists participated in the anti-tumor treatment and pharmaceutical care for a breast cancer patient with CKD. Clinical pharmacists reviewed guidelines and literature to assist the clinical physician in formulating the initial neoadjuvant treatment plan (docetaxel+trastuzumab+paltuzumab) and provided monitoring recommendations for potential adverse drug reactions, such as vomiting, myelosuppression, renal impairment, cardiotoxicity. In response to the patient’s acute kidney injury after treatment, clinical pharmacists assisted the physician in analyzing the cause of the adverse reaction through causality assessment. Taking into account the patient’s preferences, docetaxel was substituted with paclitaxel (which did not require dose adjustment based on renal function). The clinical pharmacists collaborated with the physician to establish a postoperative targeted therapy regimen (trastuzumab+pertuzumab). Taking into account the patient’s positive estrogen receptor status, the clinical pharmacists recommended to initiate regular anastrozole administration after the completion of radiotherapy and undergo periodic bone density assessments. RESULTS The clinical physician accepted the suggestions from the clinical pharmacists. The patient successfully completed preoperative neoadjuvant chemotherapy and postoperative targeted therapy, and was discharged with medication (anastrozole). During the treatment process, the patient did not experience adverse reactions such as myelosuppression, cardiotoxicity, or the occurrence of osteoporosis. CONCLUSIONS Clinical pharmacists analyzed and adjusted the preoperative and postoperative antitumor treatment plans based on the patient’s renal function. They promptly assessed the correlation between antitumor drugs and acute kidney injury, and actively implemented comprehensive pharmaceutical care to ensure medication safety for breast cancer patients with CKD.
2.The Effects of Facilitation and Inhibition During Multimodal Somatosensory Integration
Yu ZHANG ; Ming ZHANG ; Ya-Zhuo KONG
Progress in Biochemistry and Biophysics 2025;52(4):845-857
The somatosensory system, including modalities such as touch, temperature, and pain, is essential for perceiving and interacting with the environment. When individuals encounter different somatosensory modalities, they interact through a process called multimodal somatosensory integration. This integration is essential for accurate perception, motor coordination, pain management, and adaptive behavior. Disruptions in this process can lead to a variety of sensory disorders and complicate rehabilitation efforts. However, research on the behavioral patterns and neural mechanisms underlying multimodal somatosensory integration remains limited. According to previous studies, multimodal somatosensory integration can result in facilitative or inhibitory effects depending on factors like stimulus type, intensity, and spatial proximity. Facilitative effects are observed primarily when stimuli from the same sensory modality (e.g., two touch or temperature stimuli) are presented simultaneously, leading to amplified perceptual strength and quicker reaction times. Additionally, certain external factors, such as cooling, can increase sensitivity to other sensory inputs, further promoting facilitative integration. In contrast, inhibitory effects may also emerge when stimuli from different sensory modalities interact, particularly between touch and pain. Under such conditions, one sensory input (e.g., vibration or non-noxious temperature stimulation) can effectively reduce the perceived intensity of the other, often resulting in reduced pain perception. These facilitative and inhibitory interactions are critical for efficient processing in a multi-stimulus environment and play a role in modulating the experience of somatosensory inputs in both normal and clinical contexts. The neural mechanisms underlying multimodal somatosensory integration are multi-tiered, encompassing peripheral receptors, the spinal cord, and various cortical structures. Facilitative integration relies on the synchronous activation of peripheral receptors, which transmit enhanced signals to higher processing centers. At the cortical level, areas such as the primary and secondary somatosensory cortex, through multimodal neuron responses, facilitate combined representation and amplification of sensory signals. In particular, the thalamus is a significant relay station where multisensory neurons exhibit superadditive responses, contributing to facilitation by enhancing signal strength when multiple inputs are present. Inhibitory integration, on the other hand, is mediated by mechanisms within the spinal cord, such as gating processes that limit transmission of competing sensory signals, thus diminishing the perceived intensity of certain inputs. At the cortical level, lateral inhibition within the somatosensory cortex plays a key role in reducing competing signals from non-target stimuli, enabling prioritized processing of the most relevant sensory input. This layered neural architecture supports the dynamic modulation of sensory inputs, balancing facilitation and inhibition to optimize perception. Understanding the neural pathways involved in somatosensory integration has potential clinical implications for diagnosing sensory disorders and developing therapeutic strategies. Future research should focus on elucidating the specific neural circuitry and mechanisms that contribute to these complex interactions, providing insights into the broader implications of somatosensory integration on behavior and cognition. In summary, this review highlights the importance of multimodal somatosensory integration in enhancing sensory perception. It also underscores the need for further exploration into the neural underpinnings of these processes to advance our understanding of sensory integration and its applications in clinical settings.
3.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
4.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
5.Jiebiao Qingli Decoction Regulates TLR7/MAPK/NF-κB Pathway to Prevent and Treat Pneumonia Induced by IAV Infection
Yu MING ; Yichuan MA ; Ruiqi YAO ; Yan CHAO ; Hongchun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):173-181
ObjectiveTo explore the mechanism of Jiebiao Qingli decoction (JQD) in treating pneumonia caused by influenza A virus (IAV) infection. MethodsA total of 132 Balb/c mice were randomly assigned into normal control (NC), model control (IAV), oseltamivir (OSV, 37.5 mg·kg-1), and high-, medium-, low-dose JQD (H-, M-, and L-JQD: 6.05, 3.02, and 1.51 g·kg-1, respectively) groups. The NC group was treated with normal saline nasal drops, and the other groups were intranasally inoculated with A/Brisbane/02/2018 (H1N1) [pdm09-like virus (H1N1)] for the modeling of IAV infection. Two hours post-modeling, the NC and IAV groups were administrated with normal saline by gavage, while other groups received corresponding drugs for 7 d. The body mass, survival status, and deaths of mice were recorded daily during the administration of the drugs. On days 3 and 7, the lung index was measured for mice in each group. Pathological changes in the lung tissue were observed via hematoxylin-eosin staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was conducted to measure the viral load (IAV-M) and the mRNA levels of Toll-like receptor 7 (TLR7), p38 mitogen-activated protein kinase (p38 MAPK), and nuclear factor-kappa B (NF-κB) in the lung tissue. Western blot was employed to measure the protein levels of p38 MAPK and NF-κB. Enzyme-linked immunosorbent assay was used to quantify serum levels of interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). ResultsCompared with the NC group, the IAV group showed reduced survival quality and survival days (P<0.01), lung congestion, inflammatory cell infiltration, elevated lung index (P<0.01), increased viral load (P<0.01), upregulated TLR7, p38 MAPK, and NF-κB levels (P<0.05, P<0.01), decreased IL-2 level (P<0.01), and elevated IL-6 and TNF-α levels (P<0.01). Compared with the IAV group, H-JQD prolonged survival days (P<0.05). All JQD groups alleviated pathological changes in the lung tissue and reduced the lung index (P<0.01). M-JQD and H-JQD decreased the viral load (P<0.01). H-JQD downregulated the mRNA levels of TLR7, p38 MAPK, and NF-κB (P<0.05, P<0.01) and the protein levels of p38 MAPK and NF-κB (P<0.01), increased the serum IL-2 level (P<0.01), and lowered the IL-6 and TNF-α levels (P<0.05, P<0.01). M-JQD downregulated the mRNA level of NF-κB (P<0.01) and the protein level of p38 MAPK (P<0.05), elevated the IL-2 level (P<0.01), and lowered the TNF-α level (P<0.01). ConclusionM- and H-JQD can prevent and control IAV infection-induced pneumonia dose-dependently by inhibiting the TLR7/MAPK/NF-κB signaling pathway, increasing IL-2, and reducing excessive secretion of IL-6 and TNF-α.
6.Jiebiao Qingli Decoction Regulates TLR7/MAPK/NF-κB Pathway to Prevent and Treat Pneumonia Induced by IAV Infection
Yu MING ; Yichuan MA ; Ruiqi YAO ; Yan CHAO ; Hongchun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):173-181
ObjectiveTo explore the mechanism of Jiebiao Qingli decoction (JQD) in treating pneumonia caused by influenza A virus (IAV) infection. MethodsA total of 132 Balb/c mice were randomly assigned into normal control (NC), model control (IAV), oseltamivir (OSV, 37.5 mg·kg-1), and high-, medium-, low-dose JQD (H-, M-, and L-JQD: 6.05, 3.02, and 1.51 g·kg-1, respectively) groups. The NC group was treated with normal saline nasal drops, and the other groups were intranasally inoculated with A/Brisbane/02/2018 (H1N1) [pdm09-like virus (H1N1)] for the modeling of IAV infection. Two hours post-modeling, the NC and IAV groups were administrated with normal saline by gavage, while other groups received corresponding drugs for 7 d. The body mass, survival status, and deaths of mice were recorded daily during the administration of the drugs. On days 3 and 7, the lung index was measured for mice in each group. Pathological changes in the lung tissue were observed via hematoxylin-eosin staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was conducted to measure the viral load (IAV-M) and the mRNA levels of Toll-like receptor 7 (TLR7), p38 mitogen-activated protein kinase (p38 MAPK), and nuclear factor-kappa B (NF-κB) in the lung tissue. Western blot was employed to measure the protein levels of p38 MAPK and NF-κB. Enzyme-linked immunosorbent assay was used to quantify serum levels of interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). ResultsCompared with the NC group, the IAV group showed reduced survival quality and survival days (P<0.01), lung congestion, inflammatory cell infiltration, elevated lung index (P<0.01), increased viral load (P<0.01), upregulated TLR7, p38 MAPK, and NF-κB levels (P<0.05, P<0.01), decreased IL-2 level (P<0.01), and elevated IL-6 and TNF-α levels (P<0.01). Compared with the IAV group, H-JQD prolonged survival days (P<0.05). All JQD groups alleviated pathological changes in the lung tissue and reduced the lung index (P<0.01). M-JQD and H-JQD decreased the viral load (P<0.01). H-JQD downregulated the mRNA levels of TLR7, p38 MAPK, and NF-κB (P<0.05, P<0.01) and the protein levels of p38 MAPK and NF-κB (P<0.01), increased the serum IL-2 level (P<0.01), and lowered the IL-6 and TNF-α levels (P<0.05, P<0.01). M-JQD downregulated the mRNA level of NF-κB (P<0.01) and the protein level of p38 MAPK (P<0.05), elevated the IL-2 level (P<0.01), and lowered the TNF-α level (P<0.01). ConclusionM- and H-JQD can prevent and control IAV infection-induced pneumonia dose-dependently by inhibiting the TLR7/MAPK/NF-κB signaling pathway, increasing IL-2, and reducing excessive secretion of IL-6 and TNF-α.
7.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
8.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
9.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
10.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.

Result Analysis
Print
Save
E-mail