1.Effects of Exercise Training on The Behaviors and HPA Axis in Autism Spectrum Disorder Rats Through The Gut Microbiota
Xue-Mei CHEN ; Yin-Hua LI ; Jiu-Gen ZHONG ; Zhao-Ming YANG ; Xiao-Hui HOU
Progress in Biochemistry and Biophysics 2025;52(6):1511-1528
ObjectiveThe study explores the influence of voluntary wheel running on the behavioral abnormalities and the activation state of the hypothalamic-pituitary-adrenal (HPA) axis in autism spectrum disorder (ASD) rats through gut microbiota. MethodsSD female rats were selected and administered either400 mg/kg of valproic acid (VPA) solution or an equivalent volume of saline via intraperitoneal injection on day 12.5 of pregnancy. The resulting offspring were divided into 2 groups: the ASD model group (PASD, n=35) and the normal control group (PCON, n=16). Behavioral assessments, including the three-chamber social test, open field test, and Morris water maze, were conducted on postnatal day 23. After behavioral testing, 8 rats from each group (PCON, PASD) were randomly selected for serum analysis using enzyme-linked immunosorbent assay (ELISA) to measure corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) concentration, to evaluate the functional state of the HPA axis in rats. On postnatal day 28, the remaining 8 rats in the PCON group were designated as the control group (CON, n=8), and the remaining 27 rats in the PASD group were randomly divided into 4 groups: ASD non-intervention group (ASD, n=6), ASD exercise group (ASDE, n=8), ASD fecal microbiota transplantation group (FMT, n=8), and ASD sham fecal microbiota transplantation group (sFMT, n=5). The rats in the ASD group and the CON group were kept under standard conditions, while the rats in the ASDE group performed 6 weeks of voluntary wheel running intervention starting on postnatal day 28. The rats in the FMT group were gavaged daily from postnatal day 42 with 1 ml/100 g fresh fecal suspension from ASDE rats which had undergone exercise for 2 weeks, 5 d per week, continuing for 4 weeks. The sFMT group received an equivalent volume of saline. After the interventions were completed, behavioral assessments and HPA axis markers were measured for all groups. ResultsBefore the intervention, the ASD model group exhibited significantly reduced social ability, social novelty preference, spontaneous activity, and exploratory interest, as well as impaired spatial learning, memory, and navigation abilities compared to the normal control group (P<0.05). Serum concentration of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in the PASD group were significantly higher than those in the PCON group (P<0.05). Following 6 weeks of voluntary wheel running, the ASDE group showed significant improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, spatial learning, memory, and navigation skills compared to the ASD group (P<0.05), with a significant decrease in serum CORT concentration (P<0.05), and a downward trend in CRH and ACTH concentration. After 4 weeks of fecal microbiota transplantation in the exercise group, the FMT group showed marked improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, as well as spatial learning, memory, and navigation abilities compared to both the ASD and sFMT groups (P<0.05). In addition, serum ACTH and CORT concentration were significantly reduced (P<0.05), and CRH concentration also showed a decreasing trend. ConclusionExercise may improve ASD-related behaviors by suppressing the activation of the HPA axis, with the gut microbiota likely playing a crucial role in this process.
2.A New Risk of Cardiovascular Disease —— Micro-nanoplastics
Fan GAO ; Ming YANG ; Zhong CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1932-1941
In recent years, with the large-scale use of plastic products, the degree of plastic pollution has increased, becoming a serious global problem. Microplastics and nanoplastics (MNPs), as emerging environmental pollutants, are widely found in organisms and the environment. These plastic particles enter the human body through 3 exposure pathways: breathing, the food chain’s bioaccumulation and transfer, and skin contact, thereby exerting toxic effects. The physical attributes of MNPs, including their shape, size, and surface characteristics, are not static but rather undergo dynamic transformations in response to changing environmental conditions. These changes can significantly influence their behavior and interactions within different ecosystems. When considering MNPs as carriers of chemicals, two primary mechanisms can be distinguished. (1) MNPs have the capacity to adsorb pollutants from their surrounding environment. These pollutants may encompass a wide range of substances, such as heavy metals, organic compounds, and other contaminants that are commonly found in water, soil, or air. (2) MNPs may also carry chemical agents that are artificially introduced during their commercial production process. For example, flame retardants and pigments are often added to plastics to enhance their performance or appearance. These artificially added chemicals can remain associated with MNPs throughout their lifecycle and may contribute to their overall toxicological impact. Cardiovascular diseases (CVDs) are a general term for diseases of the heart, arteries, veins, and capillaries, and are one of the main causes of disability and death. CVDs have higher incidence, mortality, and recurrence rates, and more complications, which reduce the quality of life and happiness of patients, the phenomenon is gradually showing a trend of early onset, therefore early-stage prevention for CVDs is of critical importance. This article reviews the properties of MNPs and their potential threats to the cardiovascular system, aiming to explore how MNPs cause CVDs through certain physiological effects, toxicity mechanisms, and related pathways. Our review primarily focus on elucidating several critical mechanisms through which MNPs exert their adverse effects. Specifically, the review examines how the enhancement of oxidative stress can trigger the expression of pro-inflammatory factors, which in turn leads to the formation of a chronic inflammatory microenvironment within biological systems. Additionally, MNPs possess the capacity to adsorb toxic metals and organic substances from their surroundings. Furthermore, the review summarizes that sewage irrigation and atmospheric deposition are significant factors contributing to the co-pollution of heavy metals with MNPs in environmental settings. The interaction between heavy metals and MNPs has been shown to have detrimental effects on agricultural productivity, as it can inhibit crop growth and simultaneously increase the absorption rate of heavy metals in plants. When these contaminated plants enter the food chain, the accumulated heavy metals can ultimately be ingested by humans. This process poses a potential risk for inducing acute coronary syndrome and other CVDs, thereby underscoring the importance of understanding and mitigating the impact of MNPs on human health. In addition, our review also gives examples of the long-term effects of MNPs on cardiovascular function and the adverse consequences such as arrhythmia and atherosclerosis, the limitations of the current studies of MNPs affecting cardiovascular system health and future directions are also explored.
3.Cancer therapy-related interstitial lung disease.
Chengzhi ZHOU ; Haiyi DENG ; Yilin YANG ; Fei WANG ; Xinqing LIN ; Ming LIU ; Xiaohong XIE ; Tao LUAN ; Nanshan ZHONG
Chinese Medical Journal 2025;138(3):264-277
With the increasing utilization of cancer therapy, the incidence of lung injury associated with these treatments continues to rise. The recognition of pulmonary toxicity related to cancer therapy has become increasingly critical, for which interstitial lung disease (ILD) is a common cause of mortality. Cancer therapy-related ILD (CT-ILD) can result from a variety of treatments including chemotherapy, targeted therapy, immune checkpoint inhibitors, antibody-drug conjugates, and radiotherapy. CT-ILD may progress rapidly and even be life-threatening; therefore, prompt diagnosis and timely treatment are crucial for effective management. This review aims to provide valuable information on the risk factors associated with CT-ILD; elucidate its underlying mechanisms; discuss its clinical features, imaging, and histological manifestations; and emphasize the clinical-related views of its diagnosis. In addition, this review provides an overview of grading, typing, and staging treatment strategies used for the management of CT-ILD.
Humans
;
Lung Diseases, Interstitial/diagnosis*
;
Neoplasms/therapy*
;
Risk Factors
;
Immune Checkpoint Inhibitors/adverse effects*
;
Antineoplastic Agents/therapeutic use*
4.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
5.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
6.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
7.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
8.Professor YANG Zhong-qi's prescription patterns for hypertension based on latent structure model and association rule analysis.
Hui-Lin LIU ; Shi-Hao NI ; Xiao-Jiao ZHANG ; Wen-Jie LONG ; Xiao-Ming DONG ; Zhi-Ying LIU ; Hui-Li LIAO ; Zhong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(10):2865-2874
Based on latent structure model and association rule analysis, this study investigates the prescription patterns used by professor YANG Zhong-qi in treating hypertension with traditional Chinese medicine(TCM) and infers the associated TCM syndromes, providing a reference for clinical syndrome differentiation and treatment. The observation window spanned from January 8, 2013, to June 26, 2024, during which qualified herbal decoction prescriptions meeting efficacy criteria were extracted from the outpatient medical record system of the First Affiliated Hospital of Guangzhou University of Chinese Medicine and compiled into a standardized database. Statistical analysis of high-frequency herbs included frequency counts and herbal property-channel tropism analysis. Latent structure modeling and association rule analysis were performed using R 4.3.2 and Lantern 5.0 software to identify core herbal combinations and infer TCM syndrome patterns. A total of 2 436 TCM prescriptions were included in the study, involving 263 drugs with a cumulative frequency of 29 783. High-frequency herbs comprised Uncariae Ramulus cum Uncis, Poria, Glycyrrhizae Radix et Rhizoma, Puerariae Lobatae Radix, and Alismatis Rhizoma, predominantly categorized as deficiency-tonifying, heat-clearing, and blood-activating and stasis-resolving herbs. Latent structure analysis identified 18 latent variables, 74 latent classes, 5 comprehensive clustering models, and 15 core herbal combinations, suggesting that the core syndrome clusters include liver Yang hyperactivity pattern, Yin deficiency with Yang hyperactivity pattern, phlegm-stasis intermingling pattern, and liver-kidney insufficiency pattern. Association rule analysis revealed 22 robust association rules. RESULTS:: indicate that hypertension manifests as a deficiency-rooted excess manifestation, significantly associated with functional dysregulation of the liver, lung, spleen-stomach, heart, and kidney. Key pathogenic mechanisms involve liver Yang hyperactivity, phlegm-stasis interaction, and liver-kidney insufficiency. Therapeutic strategies should prioritize liver-calming, spleen-fortifying, and deficiency-tonifying principles, supplemented by dynamic regulation of Qi-blood and Yin-Yang balance according to syndrome evolution, alongside pathogen-eliminating methods such as phlegm-resolving and stasis-dispelling. Synergistic interventions like mind-tranquilizing therapies should be tailored to individual conditions.
Hypertension/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional
;
Drug Prescriptions
;
Latent Class Analysis
9.Inheritance, excavation, and modern research overview of processing methods of traditional Chinese medicine decoctions.
Xiao-Xia LIU ; Ping LUO ; Ling-Yun ZHONG ; Fang WANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(13):3596-3631
"Prescriptions being modified according to the syndrome and processing following prescription" is one of the characteristics of clinical medication in traditional Chinese medicine(TCM), and it is also an important sign that distinguishes TCM from other traditional medicine. The processing methods of TCM decoctions originate from the ingenious combination of medicinal materials, the mutual restraint of seven emotions, the harmony of four properties, and the pairing and combining of medicinal materials in prescriptions. They are the concrete embodiment of the essence and characteristics of "prescriptions being modified according to the syndrome and processing following prescription". However, due to insufficient inheritance and innovation, many characteristic varieties and pharmaceutical experience have been lost or forgotten. There is an urgent need to systematically explore and organize the processing theory and characteristic varieties of TCM decoctions, delve into the scientific connotation of the processing principles, and optimize the processing technology. Therefore, this article systematically organizes and summarizes the historical evolution and modern research progress of TCM decoction processing, conducts in-depth reflection on the current problems, and puts forward reasonable suggestions, with the aim of further inheriting, enriching, and developing the processing theory of TCM decoctions and providing support for ensuring the clinical efficacy of prescriptions.
Drugs, Chinese Herbal/isolation & purification*
;
Humans
;
Medicine, Chinese Traditional/methods*
10.Research progress on prevention and treatment of hepatocellular carcinoma with traditional Chinese medicine based on gut microbiota.
Rui REN ; Xing YANG ; Ping-Ping REN ; Qian BI ; Bing-Zhao DU ; Qing-Yan ZHANG ; Xue-Han WANG ; Zhong-Qi JIANG ; Jin-Xiao LIANG ; Ming-Yi SHAO
China Journal of Chinese Materia Medica 2025;50(15):4190-4200
Hepatocellular carcinoma(HCC), the third leading cause of cancer-related death worldwide, is characterized by high mortality and recurrence rates. Common treatments include hepatectomy, liver transplantation, ablation therapy, interventional therapy, radiotherapy, systemic therapy, and traditional Chinese medicine(TCM). While exhibiting specific advantages, these approaches are associated with varying degrees of adverse effects. To alleviate patients' suffering and burdens, it is crucial to explore additional treatments and elucidate the pathogenesis of HCC, laying a foundation for the development of new TCM-based drugs. With emerging research on gut microbiota, it has been revealed that microbiota plays a vital role in the development of HCC by influencing intestinal barrier function, microbial metabolites, and immune regulation. TCM, with its multi-component, multi-target, and multi-pathway characteristics, has been increasingly recognized as a vital therapeutic treatment for HCC, particularly in patients at intermediate or advanced stages, by prolonging survival and improving quality of life. Recent global studies demonstrate that TCM exerts anti-HCC effects by modulating gut microbiota, restoring intestinal barrier function, regulating microbial composition and its metabolites, suppressing inflammation, and enhancing immune responses, thereby inhibiting the malignant phenotype of HCC. This review aims to elucidate the mechanisms by which gut microbiota contributes to the development and progression of HCC and highlight the regulatory effects of TCM, addressing the current gap in systematic understanding of the "TCM-gut microbiota-HCC" axis. The findings provide theoretical support for integrating TCM with western medicine in HCC treatment and promote the transition from basic research to precision clinical therapy through microbiota-targeted drug development and TCM-based interventions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Carcinoma, Hepatocellular/microbiology*
;
Liver Neoplasms/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional

Result Analysis
Print
Save
E-mail