1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Protective effect and mechanism of Icariin on oxidative stress injury in neurons
Yu-Meng DU ; Si-Min YANG ; Xiao-Tong QIN ; Yan LI ; Rui-Jun JU ; Xiao-Ming PENG ; Xiao-Qiang YAN ; Jie GUAN ; Ling-Yue MA
The Chinese Journal of Clinical Pharmacology 2024;40(13):1869-1873
Objective To explore the protective mechanism of icariin on neuronal oxidative damage,providing a basic pharmacological basis for the treatment of cognitive impairment.Methods Glutamate was used to induce oxidative stress injury in HT22 cells.HT22 cells were divided into control group(normal cultured cells),model group(glutamate injury model)and experimental-L,-M,-H groups(5,10 and 20 μmol·L-1 icariin pretreatment for modeling,respectively).Cell proliferation was detected by cell counting kit-8(CCK-8)method;cytotoxicity was detected by lactate dehydrogenase(LDH)method;reactive oxygen species(ROS)levels were detected by flow cytometry;superoxide dismutase(SOD)levels were detected by biochemical kits;the expression levels of Kelch-like epichlorohydrin-related protein-1(Keap1),nuclear factor E2-related factor 2(Nrf2)were detected by Western blotting;the corresponding mRNA expression was detected by real-time fluorescence quantification polymerose chain reaction.Results The cell viability of control group,model group and experimental-L,-M,-H groups were(100.00±1.31)%,(66.38±2.44)%,(72.07±4.95)%,(82.41±3.57)%and(87.97±4.98)%;LDH release were(0.48±0.52)%,(18.82±2.09)%,(15.32±1.17)%,(10.37±1.39)%and(6.51±0.87)%;ROS level were(14.23±1.13)%,(41.74±1.60)%,(35.69±1.08)%,(33.28±1.69)%and(30.32±2.03)%;SOD levels were(54.84±1.17),(37.95±1.13),(48.02±1.28),(50.56±1.34)and(52.55±1.04)U·mg-1;Keap1 protein levels were 0.36±0.01,0.52±0.03,0.46±0.04,0.39±0.09 and 0.35±0.12;Nrf2 protein levels were 0.29±0.02,0.13±0.08,0.18±0.03,0.21±0.11 and 0.26±0.04;catalase(CAT)mRNA levels were 1.01±0.08,0.81±0.06,0.90±0.04,1.05±0.15 and 1.33±0.26;SOD mRNA levels were 1.09±0.12,0.83±0.03,0.86±0.08,0.94±0.08 and 1.09±0.16.Among the above indicators,the differences between the model group and the control group were statistically significant(all P<0.01);the differences between the experimental-M,-H groups and the model group were statistically significant(P<0.01,P<0.05).Conclusion Icariin may activate the Keap1/Nrf2/antioxidant response element(ARE)signaling pathway,regulate the expression of related proteins,and reduce the level of ROS to effectively alleviate oxidative stress injury in neuronal cells.
3.Epigenetic Mechanisms of Methamphetamine Addiction
Ming-Xin LIU ; Zi-Zhen SI ; Yu LIU
Progress in Biochemistry and Biophysics 2024;51(4):873-880
Methamphetamine (METH) is a powerful stimulant drug that can cause addiction and serious health problems. It is one of the most widely abused drugs in the world. However, the mechanisms of how METH affects the brain and leads to addiction are still unclear, and there are no effective treatments for METH addiction in clinical practice. Therefore, it is important to explore the new addiction mechanisms and treatment strategies of METH. METH addiction is a complex and chronic brain disorder that involves multiple brain regions and neurotransmitter systems. Neurotransmitters are chemical messengers that transmit signals between neurons (nerve cells) in the brain. Some of the main neurotransmitters involved in METH addiction are dopamine (DA), glutamate (Glu), norepinephrine (NE), and serotonin (SNRIS). These neurotransmitters regulate various aspects of brain function, such as reward, reinforcement, motivation, cognition, emotion, and behavior. When a person takes METH, it causes a surge of these neurotransmitters in the brain, especially in the prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc). These brain regions form a circuit called the mesocorticolimbic system, which is responsible for mediating the rewarding and reinforcing effects of drugs and natural stimuli. The increased levels of neurotransmitters in this circuit make the person feel euphoric, alert, confident, and energetic. However, repeated or chronic use of METH can also cause negative effects, such as anxiety, paranoia, psychosis, depression, and cognitive impairment. The effects of METH on the brain are not only due to the changes in neurotransmitter levels, but also to the changes in gene expression. Gene expression is the process by which genes are turned on or off to produce proteins that perform various functions in the cells. Gene expression can be influenced by environmental factors, such as drugs, stress, diet, etc. One way that environmental factors can affect gene expression is through epigenetic mechanisms. Epigenetics is a branch of genetics that studies the heritable changes in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms include histone modifications, DNA methylation, and non-coding RNA regulation. These mechanisms can modulate the chromatin structure and accessibility, thereby affecting the transcriptional activity of genes. Chromatin is a complex of DNA and proteins that forms the chromosomes in the nucleus of the cell. The chromatin structure can be altered by adding or removing chemical groups to histones (proteins that wrap around DNA) or DNA itself. These chemical groups can either activate or repress gene expression by changing the affinity of transcription factors (proteins that bind to DNA and initiate transcription) or other regulatory molecules. Non-coding RNAs are RNA molecules that do not code for proteins but can regulate gene expression by interacting with DNA, RNA, or proteins. Epigenetic mechanisms provide a link between environmental stimuli and gene expression, and play an important role in various physiological and pathological processes, including drug addiction. Recent studies have shown that epigenetic mechanisms are involved in the regulation of neurotransmitter systems and neural plasticity in response to METH exposure. Neural plasticity is the ability of neurons to change their structure and function in response to experience or injury. Neural plasticity is essential for learning, memory, adaptation, and recovery. The expression of some genes related to METH addiction is altered by epigenetic modifications, such as histone acetylation, methylation, ubiquitination, and non-coding RNA regulation. These epigenetic changes may affect the synaptic function and morphology, neuronal connectivity, and circuitry formation in the brain regions implicated in METH addiction. Moreover, some epigenetic modifications may persist for a long time after METH withdrawal, suggesting that they may contribute to the development and maintenance of METH addiction. In this article, we review the current literature on the epigenetic mechanisms of METH addiction. We will first introduce METH and its pharmacological effects, and then discuss the epigenetic regulation of neurotransmitter systems and neural plasticity by METH. We will focus on the changes of histone, DNA, and RNA during METH addiction, and the possible causes and consequences of their relationship with METH addiction. We will also provide some perspectives on the potential applications of epigenetic interventions for METH addiction treatment.
4.Enhancing production of emestrin in Emericella sp. 1454 by adding the biosynthetic precursor glutathione
Yu-chuan CHEN ; Tong-mei XIAO ; Bing-jie SU ; Bi-ying YAN ; Li-yan YU ; Shu-yi SI ; Ming-hua CHEN
Acta Pharmaceutica Sinica 2024;59(4):1087-1091
Based on the genomic information of
5.Separation and determination of chiral and achiral impurities in glimepiride tablets by supercritical fluid chromatography
Han CHEN ; Li-ju YU ; Yan-hua FENG ; Si-li LIU ; Li-li HUANG ; Jian-ping ZHU ; Ming DENG
Acta Pharmaceutica Sinica 2024;59(8):2337-2342
Separation and determination of chiral and achiral impurities in glimepiride tablets by supercritical fluid chromatography. Chiral and achiral impurities were separated on a ACQUITY UPC2 TrefoilTM CEL1 column (150 mm × 3.0 mm, 2.5 μm) maintained at 30 ℃ with the mobile phase containing a mixture of CO2 and methanol-isopropanol (1∶1) at 1 mL·min-1, and the detection wavelength was set at 228 nm. The back pressure was set at 13.8 MPa. The injection volume was 5 μL. In the chromatogram of the system suitability solution, the peaks elute in the following order: impurity Ⅳ, impurity Ⅴ, glimepiride, impurity Ⅲ, impurity Ⅰ and impurity Ⅱ. The six substances were separated successfully in 6 min using the proposed method with a resolution factor of 2.9, 1.6, 3.0, 2.0, 6.4. The impurity Ⅰ-Ⅴ detection limit (S/N = 3) was 0.17, 0.10, 0.06, 0.15, 0.10 μg·mL-1, respectively. Good linear relationship was established between the peak response and the concentration in the range of 0.48-51.30 μg·mL-1 for all impurities. The spiked recovery of impurity Ⅰ-Ⅴ was found to be acceptable for 99.9%, 98.9%, 102.1%, 100.1%, 96.3% (
6.Prevalence and risk evaluation of cardiovascular disease in the newly diagnosed prostate cancer population in China: A nationwide, multi-center, population-based cross-sectional study
Weiyu ZHANG ; Huixin LIU ; Ming LIU ; Shi YING ; Renbin YUAN ; Hao ZENG ; Zhenting ZHANG ; Sujun HAN ; Zhannan SI ; Bin HU ; Simeng WEN ; Pengcheng XU ; Weimin YU ; Hui CHEN ; Liang WANG ; Zhitao LIN ; Tao DAI ; Yunzhi LIN ; Tao XU
Chinese Medical Journal 2024;137(11):1324-1331
Background::Cardiovascular disease (CVD) has emerged as the leading cause of death from prostate cancer (PCa) in recent decades, bringing a great disease burden worldwide. Men with preexisting CVD have an increased risk for major adverse cardiovascular events when treated with androgen deprivation therapy (ADT). The present study aimed to explore the prevalence and risk evaluation of CVD among people with newly diagnosed PCa in China.Methods::Clinical data of newly diagnosed PCa patients were retrospectively collected from 34 centers in China from 2010 to 2022 through convenience sampling. CVD was defined as myocardial infarction, arrhythmia, heart failure, stroke, ischemic heart disease, and others. CVD risk was estimated by calculating Framingham risk scores (FRS). Patients were accordingly divided into low-, medium-, and high-risk groups. χ2 or Fisher’s exact test was used for comparison of categorical variables. Results::A total of 4253 patients were enrolled in the present study. A total of 27.0% (1147/4253) of patients had comorbid PCa and CVD, and 7.2% (307/4253) had two or more CVDs. The enrolled population was distributed in six regions of China, and approximately 71.0% (3019/4253) of patients lived in urban areas. With imaging and pathological evaluation, most PCa patients were diagnosed at an advanced stage, with 20.5% (871/4253) locally progressing and 20.5% (871/4253) showing metastasis. Most of them initiated prostatectomy (46.6%, 1983/4253) or regimens involving ADT therapy (45.7%, 1944/4253) for prostate cancer. In the present PCa cohort, 43.1% (1832/4253) of patients had hypertension, and half of them had poorly controlled blood pressure. With FRS stratification, as expected, a higher risk of CVD was related to aging and metabolic disturbance. However, we also found that patients with treatment involving ADT presented an originally higher risk of CVD than those without ADT. This was in accordance with clinical practice, i.e., aged patients or patients at advanced oncological stages were inclined to accept systematic integrative therapy instead of surgery. Among patients who underwent medical castration, only 4.0% (45/1118) received gonadotropin releasing hormone antagonists, in stark contrast to the grim situation of CVD prevalence and risk.Conclusions::PCa patients in China are diagnosed at an advanced stage. A heavy CVD burden was present at the initiation of treatment. Patients who accepted ADT-related therapy showed an original higher risk of CVD, but the awareness of cardiovascular protection was far from sufficient.
7.Deep learning-based Gaussian and pepper noise removal method for visual images of surgical instruments
Bao-Ming MIAO ; Wei CHEN ; Hang WU ; Ming YU ; Si-Qi HAN
Chinese Medical Equipment Journal 2024;45(2):1-7
Objective To propose a deep learning-based method for removing Gaussian and pepper noises of the surgical instrument visual images so as to recover the detailed features of the images.Methods A lightweight multi-task progressive network was constructed involving in a multi-feature fusion encoder-decoder network,an attention-guided network and a detail-recovery progressive network,which used the multi-feature fusion encoder-decoder network to predict and eliminate the noise information in the visual images,the attention-guided network to remove the residual noise and the detail-recovery progressive network to restore the underlying detail features of the denoised images.Some of the regular convolutions in the detail recovery progressive network were replaced with depth separable convolutions to realize lightweight design of the network constructed.Denoising experiments were conducted on the publicly available CBSD68 and Kodak24 datasets and the self-constructed surgical instrument noise dataset so as to compare the denoising effects of the network constructed and the traditional methods and the classification accuracies of ResNet-18 model and ResNet-34 model for the denosied images by the network and to analyze computing power and memory usage before and after the lightweight design.Results The network constructed gained better denoising effect than the classical methods for publicly available datasets,and ResNet-18 model and ResNet-34 model had higher accuracies when used to classify the images denoised by the network for the self-constructed surgical instrument noise dataset.Lightweight design had the parameter number and floating point operations(FLOPs)decreased by approximately 27.27%and 29.81%,respectively.Conclusion The proposed lightweight multi-task progressive network behaves well in denoising surgical instrument visual images with reduced computating power consump-tion and memory usage.[Chinese Medical Equipment Journal,2024,45(2):1-7]
8.Research on robot-based surgical instrument detection and pose estimation algorithm with multi-cascade deep learning processor
Si-Qi HAN ; Min-Kui CHEN ; Li-Pu WEI ; Qian RAN ; Qian XU ; Ming YU ; Yu-Chao SUN ; Feng CHEN
Chinese Medical Equipment Journal 2024;45(6):1-8
Objective To propose a multi-cascade deep learning processor-based surgical instrument detection and pose estimation algorithm to facilitate the robotic scurb nurse to recognize and delivery surgical instruments.Methods The proposed multi-cascade deep leaning processor-based CYSP algorithm was hibernated with several functional modules such as YOLOX with coordinate attention block(CA-YOLOX),segment anything model(SAM)and principal component analysis(PCA).Firstly,CA-YOLOX was applied to identifying the types of the surgical instruments and completing the coarse positioning of x and y coordinates;secondly,the SAM segmenter was used to clarify the positions of the instruments in the RGB image,and the depth information and internal parameters of the camera were introduced to obtain the point cloud of the surgical instruments;finally,the center of mass,principal direction and normal direction of the surgical instrument point cloud were determined through the PCA algorithm,with which the rotation and translation(RT)matrix between the target coordinate system(surgical instrument center of mass coordinate system)and the base coordinate system of the robotic arm was solved,and the matrix was converted into a quaternion and then transmitted to the robotic arm control unit so as to drive the robotic arm to arrive at the corresponding position and pick up the instrument to complete the instrument delivery task.Migration training was accomplished on a self-constructed surgical instrument image dataset and the effectiveness of the proposed algorithm was evaluated,and instrument delivery experiments were performed on a seven-degree-of-freedom robotic arm and the success rate of the algorithm was assessed.Results The multi-cascade deep leaning processor-based CYSP algorithm had a recognition accuracy of 98.52%on the surgical instrument dataset,a success rate of 94%for the in-strument delivery experiment and average time for recognition of 0.28 s.Conclusion The multi-cascade deep leaning proces-sor-based CYSP algorithm with high reliability and practicability behaves well in facilitating the robotic scurb nurse to recog-nize and deliver surgical instruments.[Chinese Medical Equipment Journal,2024,45(6):1-8]
9.Efficacy and safety of dust mite subcutaneous immunotherapy in children with allergic asthma:a prospective randomized controlled study
Ya-Ni WANG ; Si-Qi LU ; Hai CHEN ; Yu-Qin LI ; Hong-Yan LU ; Hui ZHU ; Ming CHANG
Chinese Journal of Contemporary Pediatrics 2024;26(6):559-566
Objective To investigate the efficacy and safety of subcutaneous immunotherapy(SCIT)using dust mites in children with allergic asthma.Methods In a prospective randomized controlled study,98 children with dust mite-induced allergic asthma were randomly divided into a control group(n=49)and an SCIT group(n=49).The control group received inhaled corticosteroid treatment,while the SCIT group additionally received a standardized three-year SCIT regimen.The two groups were compared based on peripheral blood eosinophil percentage,visual analogue score(VAS),total medication score,Asthma Control Test/Childhood Asthma Control Test scores,fractional exhaled nitric oxide(FeNO),and lung function before treatment,and at 6 months,1 year,2 years,and 3 years after treatment.Adverse reactions were recorded post-injection to evaluate the safety of SCIT.Results Compared with pre-treatment levels,the SCIT group showed a significant reduction in the percentage of peripheral blood eosinophils,VAS,total medication score,and FeNO,while lung function significantly improved,and asthma control levels were better 3 years after treatment(P<0.05).Compared with the control group,the SCIT group showed more significant improvement in all evaluated indicators 3 years after treatment(P<0.05).A total of 2 744 injections were administered,resulting in 157 cases(5.72%)of local adverse reactions and 4 cases(0.15%)of systemic adverse reactions,with no severe systemic adverse events.Conclusions SCIT is an effective and safe treatment for allergic asthma in children.
10.Application of metal cushion block combined with Jumbo cup in reconstruction of acetabular bone defect in revision of artificial hip joint
Feng-Zhen LI ; Wen-Teng SI ; Ai-Li TIAN ; Yu ZHOU ; Ming-Wei CHEN
China Journal of Orthopaedics and Traumatology 2024;37(5):464-469
Objective To investigate the application effect and imaging changes of metal cushion block combined with Jumbo cup in the reconstruction of acetabular bone defect after revision of artificial hip joint.Methods Retrospective analysis was made on the clinical data of 83 patients who underwent revision acetabular bone defect reconstruction of the artificial hip joint in our hospital from September 2019 to October 2021.They were divided into group A and group B according to different surgical methods.There were 42 patients in group A,including 26 males and 16 females,aged from 44 to 72 years old with an average of(60.57±4.62)years,who underwent revision with metal cushion block and Jumbo cup.There were 41 patients in group B,including 22 males and 19 females,aged from 42 to 71 years old with an average of(58.74±4.25)years,who under-went revision with metal cushion block and bone cement mortar cup.The operation related indexes,Harris hip function score and visual analogue scale(VAS)of pain before operation,1 month and 12 month after operation were compared between two groups.The results of X-ray imaging examination(hip rotation center height,acetabular abduction angle,femoral eccentricity and imaging standard qualification rate)before and 12 month after operation were evaluated,and the incidence of complica-tions was compared between two groups.Results There was no significant difference in operation time,intraoperative bleeding volume and postoperative drainage volume between two groups(P>0.05).Both groups were followed up for 12 to 36 months with an average of(25.36±3.59)months.The scores of pain,function,deformity and Harris'total score in the two groups at 1 month after operation were higher than those before operation(P<0.05),and the scores of pain,function,deformity,joint activ-ity and Harris'total score in two groups at 1 year after operation were higher than those before operation and 1 month after op-eration(P<0.05),and the above scores in group A were higher than those in group B at 1 year after operation(P<0.05).The VAS of two groups decreased successively at 1 month and 1 year after operation(P<0.05),but there was no significant differ-ence in both groups at each time point(P>0.05).The femoral eccentricity increased in both groups at 1 year after operation(P<0.05),and group A was higher than group B(P<0.05).The height of rotation center and acetabular abduction angle de-creased in both groups at 1 year after operation(P<0.05),and the height of rotation center in group A was lower than that in group B(P<0.05),but there was no significant difference in acetabular abduction angle between two groups(P>0.05).The imaging qualification rate of group A was higher than that of group B(P<0.05).There was no significant difference in the inci-dence of adverse reactions between two groups(P>0.05).Conclusion Metal cushion block combined with Jumbo cup in the treatment of acetabular bone defects can provide the hip joint function,and restore the hip joint rotation center,femoral eccen-tricity and acetabular abduction angle,with obvious clinical effect.

Result Analysis
Print
Save
E-mail